599
Views
4
CrossRef citations to date
0
Altmetric
Basic Research

Alterations in cerebral and cardiac mitochondrial function in a porcine model of acute carbon monoxide poisoning

ORCID Icon, , , , , , , , , , , , , ORCID Icon & ORCID Icon show all
Pages 801-809 | Received 11 Nov 2020, Accepted 25 Dec 2020, Published online: 02 Feb 2021

References

  • Rose JJ, Nouraie M, Gauthier MC, et al. Clinical outcomes and mortality impact of hyperbaric oxygen therapy in patients with carbon monoxide poisoning. Crit Care Med. 2018;46(7):e649–e655.
  • Gummin DD, Mowry JB, Spyker DA, et al. 2018 Annual Report of the American Association of Poison Control Centers’ National Poison Data System (NPDS): 36th annual report. Clin Toxicol (Phila). 2019;57(12):1220–1413.
  • Ran T, Nurmagambetov T, Sircar K. Economic implications of unintentional carbon monoxide poisoning in the United States and the cost and benefit of CO detectors. Am J Emerg Med. 2018;36(3):414–419.
  • Weaver LK, Hopkins RO, Chan KJ, et al. Hyperbaric oxygen for acute carbon monoxide poisoning. N Engl J Med. 2002;347(14):1057–1067.
  • Gandini C, Castoldi AF, Candura SM, et al. Carbon monoxide cardiotoxicity. J Toxicol Clin Toxicol. 2001;39(1):35–44.
  • Favory R, Lancel S, Tissier S, et al. Myocardial dysfunction and potential cardiac hypoxia in rats induced by carbon monoxide inhalation. Am J Respir Crit Care Med. 2006;174(3):320–325.
  • Akyol S, Erdogan S, Idiz N, et al. The role of reactive oxygen species and oxidative stress in carbon monoxide toxicity: an in-depth analysis. Redox Rep. 2014;19(5):180–189.
  • Jang DH, Kelly M, Hardy K, et al. A preliminary study in the alterations of mitochondrial respiration in patients with carbon monoxide poisoning measured in blood cells. Clin Toxicol (Phila). 2017;55(6):579–584.
  • Jang DH, Khatri UG, Shortal BP, et al. Alterations in mitochondrial respiration and reactive oxygen species in patients poisoned with carbon monoxide treated with hyperbaric oxygen. ICMX. 2018;6(1):4.
  • Owiredu S, Ranganathan A, Eckmann DM, et al. Ex vivo use of cell-permeable succinate prodrug attenuates mitochondrial dysfunction in blood cells obtained from carbon monoxide-poisoned individuals. Am J Physiol Cell Physiol. 2020;319(1):C129–C35.
  • Jang DH, Greenwood JC, Spyres MB, et al. Measurement of mitochondrial respiration and motility in acute care: sepsis, trauma, and poisoning. J Intensive Care Med. 2017;32(1):86–94.
  • Chance B, Williams GR. Respiratory enzymes in oxidative phosphorylation. IV. The respiratory chain. J Biol Chem. 1955;217(1):429–438.
  • Chance B, Williams GR, Holmes WF, et al. Respiratory enzymes in oxidative phosphorylation. V. A mechanism for oxidative phosphorylation. J Biol Chem. 1955;217:439–451.
  • Chance B, Williams GR. Respiratory enzymes in oxidative phosphorylation. VI. The effects of adenosine diphosphate on azide-treated mitochondria. J Biol Chem. 1956;221(1):477–489.
  • Brown GC. Control of respiration and ATP synthesis in mammalian mitochondria and cells. Biochem J. 1992;284(1):1–13.
  • Fredriksson K, Rooyackers O. Mitochondrial function in sepsis: respiratory versus leg muscle. Crit Care Med. 2007;35(9 Suppl):S449–S453.
  • Penney DG. Acute carbon monoxide poisoning: animal models: a review. Toxicology. 1990;62(2):123–160.
  • Helke KL, Swindle MM. Animal models of toxicology testing: the role of pigs. Expert Opin Drug Metab Toxicol. 2013;9(2):127–139.
  • Tsang HG, Rashdan NA, Whitelaw CB, et al. Large animal models of cardiovascular disease. Cell Biochem Funct. 2016;34(3):113–132.
  • Busch DR, Balu R, Baker WB, et al. Detection of brain hypoxia based on noninvasive optical monitoring of cerebral blood flow with diffuse correlation spectroscopy. Neurocrit Care. 2019;30(1):72–80.
  • Ko TS, Mavroudis CD, Baker WB, et al. Non-invasive optical neuromonitoring of the temperature-dependence of cerebral oxygen metabolism during deep hypothermic cardiopulmonary bypass in neonatal swine. J Cereb Blood Flow Metab. 2020;40:187–203.
  • Durduran T, Choe R, Baker WB, et al. Diffuse optics for tissue monitoring and tomography. Rep Prog Phys. 2010;73:076701.
  • Li Z, Baker WB, Parthasarathy AB, et al. Calibration of diffuse correlation spectroscopy blood flow index with venous-occlusion diffuse optical spectroscopy in skeletal muscle. J Biomed Opt. 2015;20(12):125005.
  • Mavroudis CD, Karlsson M, Ko T, et al. Cerebral mitochondrial dysfunction associated with deep hypothermic circulatory arrest in neonatal swine. Eur J Cardiothorac Surg. 2018;54(1):162–168.
  • Mavroudis CD, Mensah-Brown KG, Ko TS, et al. Electroencephalographic response to deep hypothermic circulatory arrest in neonatal swine and humans. Ann Thorac Surg. 2018;106(6):1841–1846.
  • Rose JJ, Wang L, Xu Q, et al. Carbon monoxide poisoning: pathogenesis, management, and future directions of therapy. Am J Respir Crit Care Med. 2017;195(5):596–606.
  • Huang YQ, Peng ZR, Huang FL, et al. Mechanism of delayed encephalopathy after acute carbon monoxide poisoning. Neural Regen Res. 2020;15(12):2286–2295.
  • Tamura T, Sugihara G, Takahashi H. Memory impairment and hippocampal volume after carbon monoxide poisoning. Arch Clin Neuropsychol. 2020 Aug 7;acaa050. doi: 10.1093/arclin/acaa050.
  • de Jong R, van Hout GP, Houtgraaf JH, et al. Cardiac function in a long-term follow-up study of moderate and severe porcine model of chronic myocardial infarction. Biomed Res Int. 2015;2015:209315.
  • Cadenas E, Davies KJ. Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med. 2000;29(3–4):222–230.
  • Doll DN, Rellick SL, Barr TL, et al. Rapid mitochondrial dysfunction mediates TNF-alpha-induced neurotoxicity. J Neurochem. 2015;132(4):443–451.
  • Russell AE, Doll DN, Sarkar SN, et al. TNF-alpha and beyond: rapid mitochondrial dysfunction mediates TNF-alpha-induced neurotoxicity. J Clin Cell Immunol. 2016;7(6):467.
  • Busch DR, Baker WB, Mavroudis CD, et al. Noninvasive optical measurement of microvascular cerebral hemodynamics and autoregulation in the neonatal ECMO patient. Pediatr Res. 2020;88(6):925–933.
  • Milej D, He L, Abdalmalak A, et al. Quantification of cerebral blood flow in adults by contrast-enhanced near-infrared spectroscopy: validation against MRI. J Cereb Blood Flow Metab. 2020;40(8):1672–1684.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.