152
Views
0
CrossRef citations to date
0
Altmetric
Clinical Research

Sex differences in the susceptibility to valproic acid-associated liver injury in epileptic patients

ORCID Icon &
Pages 101-106 | Received 29 Nov 2023, Accepted 03 Feb 2024, Published online: 04 Mar 2024

References

  • Silva MFB, Aires CCP, Luis PBM, et al. Valproic acid metabolism and its effects on mitochondrial fatty acid oxidation: a review. J Inherit Metab Dis. 2008;31(2):205–216. doi: 10.1007/s10545-008-0841-x.
  • Guo H-L, Jing X, Sun J-Y, et al. Valproic acid and the liver injury in patients with epilepsy: an update. Curr Pharm Des. 2019;25(3):343–351. doi: 10.2174/1381612825666190329145428.
  • Karas B, Wilder B, Hammond E, et al. Valproate tremors. Neurology. 1982;32(4):428–432. doi: 10.1212/wnl.32.4.428.
  • Carmona-Vazquez CR, Ruiz-Garcia M, Pena-Landin DM, et al. The prevalence of obesity and metabolic syndrome in paediatric patients with epilepsy treated in monotherapy with valproic acid. Rev Neurol. 2015;61(5):193–201.
  • Liu F, Horton Sparks K, Hull V, et al. The valproic acid rat model of autism presents with gut bacterial dysbiosis similar to that in human autism. Mol Autism. 2018;9(1):61. doi: 10.1186/s13229-018-0251-3.
  • Goto S, Takayuki S, Takashi H, et al. Potential relationships between transaminase abnormality and valproic acid clearance or serum carnitine concentrations in Japanese epileptic patients. J Pharm Pharmacol. 2008;60(2):267–272. doi: 10.1211/jpp.60.2.0017.
  • Sies H, Berndt C, Jones DP. Oxidative stress. Annu Rev Biochem. 2017;86(1):715–748. doi: 10.1146/annurev-biochem-061516-045037.
  • He L, He T, Farrar S, et al. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell Physiol Biochem. 2017;44(2):532–553. doi: 10.1159/000485089.
  • Tong V, Teng X, Chang T, et al. Valproic acid II: effects on oxidative stress, mitochondrial membrane potential, and cytotoxicity in glutathione-depleted rat hepatocytes. Toxicol Sci. 2005;86(2):436–443. doi: 10.1093/toxsci/kfi185.
  • Ma L, Wang Y, Chen X, et al. Involvement of CYP2E1-ROS-CD36/DGAT2 axis in the pathogenesis of VPA-induced hepatic steatosis in vivo and in vitro. Toxicology. 2020;445:152585. ():doi: 10.1016/j.tox.2020.152585.
  • Kiang TKL, Teng XW, Karagiozov S, et al. Role of oxidative metabolism in the effect of valproic acid on markers of cell viability, necrosis, and oxidative stress in sandwich-cultured rat hepatocytes. Toxicol Sci. 2010;118(2):501–509. doi: 10.1093/toxsci/kfq294.
  • Huang Y-S, Su W-J, Huang Y-H, et al. Genetic polymorphisms of manganese superoxide dismutase, NAD(P)H:quinone oxidoreductase, glutathione S-transferase M1 and T1, and the susceptibility to drug-induced liver injury. J Hepatol. 2007;47(1):128–134. doi: 10.1016/j.jhep.2007.02.009.
  • Lucena MI, García-Martín E, Andrade RJ, et al. Mitochondrial superoxide dismutase and glutathione peroxidase in idiosyncratic drug-induced liver injury. Hepatology. 2010;52(1):303–312. doi: 10.1002/hep.23668.
  • Ma L, Pan Y, Sun M, et al. Catalase C-262T polymorphism is a risk factor for valproic acid–induced abnormal liver function in chinese patients with epilepsy. Ther Drug Monit. 2019;41(1):91–96. doi: 10.1097/FTD.0000000000000574.
  • Ueda K, Ishitsu T, Seo T, et al. Glutathione S-transferase M1 null genotype as a risk factor for carbamazepine-induced mild hepatotoxicity. Pharmacogenomics. 2007;8(5):435–442. doi: 10.2217/14622416.8.5.435.
  • Watanabe I, Tomita A, Shimizu M, et al. A study to survey susceptible genetic factors responsible for troglitazone-associated hepatotoxicity in Japanese patients with type 2 diabetes mellitus. Clin Pharmacol Ther. 2003;73(5):435–455. doi: 10.1016/s0009-9236(03)00014-6.
  • Ogusu N, Saruwatari J, Nakashima H, et al. Impact of the superoxide dismutase 2 Val16Ala polymorphism on the relationship between valproic acid exposure and elevation of γ-glutamyltransferase in patients with epilepsy: a population pharmacokinetic-pharmacodynamic analysis. PLoS One. 2014;9(11):e111066. doi: 10.1371/journal.pone.0111066.
  • Waxman DJ, Holloway MG. Sex differences in the expression of hepatic drug metabolizing enzymes. Mol Pharmacol. 2009;76(2):215–228. doi: 10.1124/mol.109.056705.
  • Ibarra M, Marta V, Pietro F, et al. Sex related differences on valproic acid pharmacokinetics after oral single dose. J Pharmacokinet Pharmacodyn. 2013;40(4):479–486. doi: 10.1007/s10928-013-9323-3.
  • Fisher RS, Acevedo C, Arzimanoglou A, et al. ILAE official report: a practical clinical definition of epilepsy. Epilepsia. 2014;55(4):475–482. doi: 10.1111/epi.12550.
  • Chien Y-W, Chen Y-L, Peng H-C, et al. Impaired homocysteine metabolism in patients with alcoholic liver disease in Taiwan. Alcohol. 2016;54:33–37. doi: 10.1016/j.alcohol.2016.06.002.
  • Wang Q, Liang M, Dong Y, et al. Effects of UGT1A4 genetic polymorphisms on serum lamotrigine concentrations in chinese children with epilepsy. Drug Metab Pharmacokinet. 2015;30(3):209–213. doi: 10.1016/j.dmpk.2014.12.007.
  • Sies H. Oxidative stress: a concept in redox biology and medicine. Redox Biol. 2015 2015;4:180–183. doi: 10.1016/j.redox.2015.01.002.
  • Komulainen T, Lodge T, Hinttala R, et al. Sodium valproate induces mitochondrial respiration dysfunction in HepG2 in vitro cell model. Toxicology. 2015;331:47–56. doi: 10.1016/j.tox.2015.03.001.
  • Tiberi J, Cesarini V, Stefanelli R, et al. Sex differences in antioxidant defence and the regulation of redox homeostasis in physiology and pathology. Mech Ageing Dev. 2023;211:111802. ():doi: 10.1016/j.mad.2023.111802.
  • Ezhilarasan D, Mani U. Valproic acid induced liver injury: an insight into molecular toxicological mechanism. Environ Toxicol Pharmacol. 2022;95:103967. doi: 10.1016/j.etap.2022.103967.
  • El-Mowafy AM, Abdel-Dayem MA, Abdel-Aziz A, et al. Eicosapentaenoic acid ablates valproate-induced liver oxidative stress and cellular derangement without altering its clearance rate: dynamic synergy and therapeutic utility. Biochim Biophys Acta. 2011;1811(7–8):460–467. doi: 10.1016/j.bbalip.2011.04.014.
  • Tang W, Abbott FS. A comparative investigation of 2-propyl-4-pentenoic acid (4-ene VPA) and its alpha-fluorinated analogue: phase II metabolism and pharmacokinetics. Drug Metab Dispos. 1997;25(2):219–227.
  • Kassahun K, Farrell K, Abbott F. Identification and characterization of the glutathione and N-acetylcysteine conjugates of (E)-2-propyl-2,4-pentadienoic acid, a toxic metabolite of valproic acid, in rats and humans. Drug Metab Dispos. 1991;19(2):525–535.
  • Deng J, Fu ZR, Wang L, et al. Acute liver failure associated with lamotrigine in children with epilepsy: a report of two cases and thoughts on pharmacogenomics. Epilepsy Behav Rep. 2022;20:100568. doi: 10.1016/j.ebr.2022.100568.
  • Higuchi S, Yano A, Takai S, et al. Metabolic activation and inflammation reactions involved in carbamazepine-induced liver injury. Toxicol Sci. 2012;130(1):4–16. doi: 10.1093/toxsci/kfs222.
  • Khivsara A, Raj JP, Hegde D, et al. Topiramate-induced acute liver injury: a rare adverse effect. Indian J Pharmacol. 2017;49(3):254–256. doi: 10.4103/ijp.IJP_414_16.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.