441
Views
0
CrossRef citations to date
0
Altmetric
Basic Research

Investigating skeletal muscle biomarkers for the early detection of Australian myotoxic snake envenoming: an animal model pilot study

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 280-287 | Received 22 Nov 2023, Accepted 25 Apr 2024, Published online: 28 May 2024

References

  • Tasoulis T, Lee MS, Ziajko M, et al. Activity of two key toxin groups in Australian elapid venoms show a strong correlation to phylogeny but not to diet. BMC Evol Biol. 2020;20(1):9. doi: 10.1186/s12862-020-1578-x.
  • Johnston CI, Ryan NM, Page CB, et al. The Australian snakebite project, 2005–2015 (ASP‐20). Med J Aust. 2017;207(3):119–125. doi: 10.5694/mja17.00094.
  • Johnston CI, Isbister GK. Australian snakebite myotoxicity (ASP-23). Clin Toxicol (Phila). 2021;59(7):611–618. doi: 10.1080/15563650.2020.1836377.
  • Isbister GK. Antivenom availability, delays and use in Australia. Toxicon X. 2023;17:100145. doi: 10.1016/j.toxcx.2022.100145.
  • Ramasamy S, Isbister GK, Hodgson WC. The efficacy of two antivenoms against the in vitro myotoxic effects of black snake (Pseudechis) venoms in the chick biventer cervicis nerve-muscle preparation. Toxicon. 2004;44(8):837–845. doi: 10.1016/j.toxicon.2004.08.005.
  • Johnston CI, Ryan NM, O'Leary MA, et al. Australian taipan (Oxyuranus spp.) envenoming: clinical effects and potential benefits of early antivenom therapy—Australian snakebite project (ASP-25). Clin Toxicol (Phila). 2017;55(2):115–122. doi: 10.1080/15563650.2016.1250903.
  • Johnston CI, Brown SGA, O'Leary MA, et al. Mulga snake (Pseudechis australis) envenoming: a spectrum of myotoxicity, anticoagulant coagulopathy, haemolysis and the role of early antivenom therapy—Australian snakebite project (ASP-19). Clin Toxicol (Phila). 2013;51(5):417–424. doi: 10.3109/15563650.2013.787535.
  • Sanhajariya S, Duffull SB, Isbister GK. Investigating myotoxicity following Australian red-bellied black snake (Pseudechis porphyriacus) envenomation. PLoS ONE. 2021;16(9):e0256653. doi: 10.1371/journal.pone.0256653.
  • Isbister GK, Brown SG, Page CB, et al. Snakebite in Australia: a practical approach to diagnosis and treatment. Med J Aust. 2013;199(11):763–768. doi: 10.5694/mja12.11172.
  • Clarkson PM, Nosaka K, Braun B. Muscle function after exercise-induced muscle damage and rapid adaptation. Med Sci Sports Exerc. 1992;24(5):512–520.
  • Lo KR, Hurst SM, Atkinson KR, et al. Development and validation of a sensitive immunoassay for the skeletal muscle isoform of creatine kinase. J Sci Med Sport. 2010;13(1):117–119. doi: 10.1016/j.jsams.2008.08.004.
  • Hart AJ, Hodgson WC, O'Leary M, et al. Pharmacokinetics and pharmacodynamics of the myotoxic venom of Pseudechis australis (mulga snake) in the anesthetised rat. Clin Toxicol (Phila). 2014;52(6):604–610. doi: 10.3109/15563650.2014.914526.
  • Isbister GK, Noutsos T, Jenkins S, et al. D‐dimer testing for early detection of venom‐induced consumption coagulopathy after snakebite in Australia (ASP‐29). Med J Aust. 2022;217(4):203–207. doi: 10.5694/mja2.51589.
  • Isbister GK, Mirajkar N, Fakes K, et al. Phospholipase A2 (PLA2) as an early indicator of envenomation in Australian elapid snakebites (ASP-27). Biomedicines. 2020;8(11):459. doi: 10.3390/biomedicines8110459.
  • Tonomura Y, Mori Y, Torii M, et al. Evaluation of the usefulness of biomarkers for cardiac and skeletal myotoxicity in rats. Toxicology. 2009;266(1–3):48–54. doi: 10.1016/j.tox.2009.10.014.
  • Burch PM, Greg Hall D, Walker EG, et al. Evaluation of the relative performance of drug-induced skeletal muscle injury biomarkers in rats. Toxicol Sci. 2016;150(1):247–256. doi: 10.1093/toxsci/kfv328.
  • Vassallo JD, Janovitz EB, Wescott DM, et al. Biomarkers of drug-induced skeletal muscle injury in the rat: troponin I and myoglobin. Toxicol Sci. 2009;111(2):402–412. doi: 10.1093/toxsci/kfp166.
  • Bohlmeyer TJ, Wu AH, Perryman MB. Evaluation of laboratory tests as a guide to diagnosis and therapy of myositis. Rheum Dis Clin North Am. 1994;20(4):845–856. doi: 10.1016/S0889-857X(21)00069-7.
  • Vanholder R, Sever MS, Erek E, et al. Rhabdomyolysis. J Am Soc Nephrol. 2000;11(8):1553–1561. doi: 10.1681/ASN.V1181553.
  • Rasmussen M, Jin J-P. Troponin variants as markers of skeletal muscle health and diseases. Front Physiol. 2021;12:747214. doi: 10.3389/fphys.2021.747214.
  • Bicer S, Reiser PJ. Myosin light chain isoform expression among single mammalian skeletal muscle fibers: species variations. J Muscle Res Cell Motil. 2004;25(8):623–633. doi: 10.1007/s10974-004-5070-9.
  • Berna MJ, Zhen Y, Watson DE, et al. Strategic use of immunoprecipitation and LC/MS/MS for trace-level protein quantification: myosin light chain 1, a biomarker of cardiac necrosis. Anal Chem. 2007;79(11):4199–4205. doi: 10.1021/ac070051f.
  • Churchman A, O'Leary MA, Buckley NA, et al. Clinical effects of red‐bellied black snake (Pseudechis porphyriacus) envenoming and correlation with venom concentrations: Australian snakebite project (ASP‐11). Med J Aust. 2010;193(11–12):696–700. doi: 10.5694/j.1326-5377.2010.tb04108.x.
  • Isbister GK, O'Leary MA, Elliott M, et al. Tiger snake (Notechis spp) envenoming: Australian snakebite project (ASP‐13). Med J Aust. 2012;197(3):173–177. doi: 10.5694/mja11.11300.
  • Kulawickrama S, O'Leary MA, Hodgson WC, et al. Development of a sensitive enzyme immunoassay for measuring taipan venom in serum. Toxicon. 2010;55(8):1510–1518. doi: 10.1016/j.toxicon.2010.03.003.
  • Apple F, Hellsten Y, Clarkson P. Early detection of skeletal muscle injury by assay of creatine kinase MM isoforms in serum after acute exercise. Clin Chem. 1988;34(6):1102–1104. doi: 10.1093/clinchem/34.6.1102.