267
Views
9
CrossRef citations to date
0
Altmetric
Articles

Characterization of products evolved from supercritical water gasification of xylose (principal sugar in hemicellulose)

, , , &

References

  • Aida, T. M., Sato, Y., Watanabe, M., Tajima, Kiyohiko., Nonakaa, Toshiyuki., Hattori, H., and Arai, K. 2007. Dehydration of d-glucose in high temperature water at pressures up to 80MPa. J. of Supercritical Fluids. 40:381–388.
  • Aida, T. M., Shiraishi, N., Kubo, M., Watanabe, M., and Smith, R. L. Jr. 2010. Reaction kinetics of D-xylose in sub- and supercritical water. J. of Supercritical Fluids. 55:208–216.
  • Antal, M. J., Jr., Allen, S. G., Schulman, D., and Xu, X. 2000. Biomass Gasification in Supercritical Water. Ind. Eng. Chem. Res. 39:4040–4053.
  • Antal, M. J., Mok, W. S. L., and Richards, G. N. 1990. Kinetic-studies of the reactions of ketoses and aldoses in water at high-temperature. 1. Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde from d-fructose and sucrose. Carbohydr. Res. 199:91–109.
  • Azadi, P., and Farnood, R. 2011. Review of heterogeneous catalysts for sub- and supercritical water gasification of biomass and wastes. Int. J. Hydrogen Energy 36:9529–9541.
  • Azadi, P., Khan, S., Strobel, F., Azadi, F., and Farnood, R. 2012. Hydrogen production from cellulose, lignin, bark and model carbohydrates in supercritical water using nickel and ruthenium catalysts. Appl. Catal. B: Environment. 117–118:330–338.
  • Dinjus, E., and Kruse, A. 2004. Hot compressed water – a suitable and sustainable solvent and reaction medium?. J. Phys.: Condensed Matter 16:1161–1172.
  • Dumitriu, S., and Dekker, M. 2005. Polysaccharides: Structural Diversity and Functional Versatility, New York.
  • Elliott, D. C., and John S. Jr. L. 2004. Aqueous catalyst systems for the water–gas shift reaction. 1. Comparative catalyst studies. Ind. Eng. Chem. Res. 43:502–508.
  • Goodwin, A., and Rorrer, G. 2009. Conversion of xylose and xylose–phenol mixtures to hydrogen-rich gas by supercritical water in an isothermal microtube flow reactor. Energy and Fuels. 23:3818–3825
  • Goodwin, A. K., and Rorrer, G. L. 2011. Modeling of supercritical water gasification of xylose to hydrogen-rich gas in a hastelloy microchannel reactor. Indus. Eng. Chem. Res. 50:7172–7182.
  • Goodwin, A. K., and Rorrer, G. L. 2010. Reaction rates for supercritical water gasification of xylose in a micro-tubular reactor. Chem. Eng. J. 163:10–21
  • Guo, L., Lu, Y., Zhang, X., Ji, C., Guan, Y., and Pei, A. 2007. Hydrogen production by biomass gasification in supercritical water: a systematic experimental and analytical study. Catalysis Today. 129:275–286.
  • Hashaikeh, R., Fang, Z., Butler, I. S., Hawari, J., and Kozinski, J. A. 2007. Hydrothermal dissolution of willow in hot compressed water as a model for biomass conversion. Fuel. 86:1614–1622.
  • Lee, I. G. 2011. Effect of metal addition to Ni/activated charcoal catalyst on gasification of glucose in supercritical water. Int. J. Hyd. Energy. 36:8869–8877.
  • Lee, I. G., and Ihm, S. K. 2009. Catalytic gasification of glucose over Ni/Activated charcoal in supercritical water. Ind. Eng. Chem. Res. 48:1435–1442.
  • Madenoğlu, T. G., Sağlam, M., Yüksel, M., and Ballice, L. 2013. Simultaneous effect of temperature and pressure on catalytic hydrothermal gasification of glucose. J. Supercritical Fluids. 73:151–160.
  • Matsumura, Y., Minowa, T., Potic, B., Kersten, S. R. A., Prins, Willibrordus P. M., Beld, B., Elliott, D., Neuenschwander, G., Kruse, A., and Antal, M. 2005. Biomass gasification in near-and super-critical water: status and prospects. Biomass Bioenergy 29:269–292.
  • Minowa, T., Ogi, T., and Yokoyama, S. 1995. Hydrogen production from wet cellulose by low-temperature gasification using a reduced nickel catalyst. Chem. Lett. 937.
  • Pinkowska, H., Wolak, P., and Zlocinska A. 2011. Hydrothermal decomposition of xylan as a model substance for plant biomass waste-Hydrothermolysis insubcritical water. Biomass Bioenergy 35:3902–3912.
  • Resende, F., Fraley, S., Berger, M., and Savage, P. 2008. Noncatalytic gasification of lignin in supercritical water. Energy Fuels. 22:1328–1334.
  • Sjöström, E., 1981. Wood Chemistry Fundamentals and Applications. Orland, FL: Academic Press.
  • Watanabe, M., Sato, T., Inomata, H., Smith R. L., Jr., Arai, K., Kruse, A., and Dinjus, E. 2004. Chemical reactions of C1 compounds in near-critical and supercritical water. Chem. Rev. 104:5803–5821.
  • Williams, P. T., and Onwudili, J. 2005. Composition of products from the supercritical water gasification of glucose: a model biomass compound. Ind. Eng. Chem. Res. 44:8739–8749.
  • Xianghong, Q., Mark, R. N., Mark, D., David, K. J., and Michael, E. H. 2005. Ab initio molecular dynamics simulations of beta-D-glucose and beta-D-xylose degradation mechanisms in acidic aqueous solution. Carbohydrate Res. 340:2319–2327.
  • Xu, X., Matsumura, Y., Stenberg, J., and Antal, M. J., Jr. (1996) Carbon-catalyzed gasification of organic feedstocks in supercritical water. Ind. Eng. Chem. Res. 35:2522–2530.
  • Yanik, J., Ebale, S., Kruse, A., Saglam, M., and Yuksel, M. 2008. Biomass gasification in supercritical water: II. Effect of catalyst. Int. J. Hyd. Energy. 33:4520–4526.
  • Yoshida, T., and Matsumura, Y. 2001. Gasification of cellulose, xylan, and lignin mixtures in supercritical water. Ind. Eng. Chem. Res. 40:5469–5474.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.