174
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Application of D-optimal Design and RSM to Optimize the Transesterification of Waste Cooking Oil Using a Biocatalyst Derived from Waste Animal Bones and Novozym 435

, &

REFERENCES

  • ASTM Standard D6751. 2008. Standard specification for bio-diesel fuel (B100) blend stock for distillate fuels. West Conshohocken, PA: ASTM. Automotive fuels-fatty-acid methyl esters (FAME) for diesel engines—Requirements and test methods. Berlin, Germany: Beuth-Verlag.
  • ASTM Standard D7467. 2013. Standard specification for diesel fuel oil, biodiesel blend (B6 to B20). In: Book of Standards, Volume: 05.04. West Conshohocken, PA: American Society for Testing and Materials.
  • ASTM Standards Methods. 1991. Annual Book of ASTM Standards. Petroleum Products and Lubricants (I–III), Vols. 05.01–05.03. West Conshohocken, PA: American Society for Testing and Materials.
  • Bamgboye, A. I., and Hansen, A. C. 2008. Prediction of cetane number of bio-diesel fuel from the fatty acid methyl ester (FAME) composition. Int. Agrophys. 22:21–29.
  • Boey, P. L., Maniam, G. P., and Abd Hamid, S. 2011a. Performance of calcium oxide as a heterogeneous catalyst in bio-diesel production: A review. Chem. Eng. J. 168:15–22.
  • Boey, P. L., Maniam, G. P., Abd Hamid, S., and Ali, D. M. H. 2011b. Utilization of waste cockle shell (Anadara granosa) in bio-diesel production from palm olein: Optimization using response surface methodology. Fuel 90:2353–2358.
  • Boro, J., Deka, D., and Thakur, A. J. 2012. A review on solid oxide derived from waste shells as catalyst for biodiesel production. Renewable Sustainable Energy Rev. 16:904–910.
  • Boro, J., Thakur, A. J., and Deka, D. 2011. Solid oxide derived from waste shells of Turnonilla striatula as a renewable catalyst for bio-diesel production. Fuel Process. Technol. 92:2061–2067.
  • Candeia, R. A., Silva, M. C. D., Carvalho Filho, J. R., Brasilino, M. G. A., Bicudo, T. C., and Santos, I. M. G. 2009. Influence of soybean bio-diesel content on basic properties of bio-diesel-diesel blends. Fuel 88:738–743.
  • Chakraborty, R., Bepari, S., and Banerjee, A. 2011. Application of calcined waste fish (Labeo rohita) scale as low-cost heterogenous catalyst for biodiesel synthesis. Bioresour. Technol. 102:3610–3618.
  • El-Gendy, N. Sh., Deriase, S. F., and Hamdy, A. 2014. Optimization of bio-diesel production from waste frying corn oil using snails shells catalyst. Energy Sources, Part A 36:632–637.
  • Felizardo, P., Correia, J. N., Raposo, I., Mendes, J. F., Berkemier, R, and Bordado, J. M. 2006. Production of bio-diesel from waste frying oils. Waste Manage. 26:489–494.
  • Jazie, A. A., Pramanik, H., and Sinha, A. S. K. 2013. Transesterification of peanut and rapeseed oils using waste of animal bone as cost effective catalyst. Mater. Renewable Sustainable Energy 2:11. DOI:10.1007/s40243-013-0011-4.
  • JUS EN 14214. 2004. Automotive fuels. Fatty acid methyl esters (FAME) for diesel engines—Requirements and test methods.Belgrade, Serbia: Standardization Institute.
  • Lim, B. P., Maniam, G. P, and Hamid, S. A. 2009. Biodiesel from adsorbed waste oil on spent bleaching clay using CaO as a heterogeneous catalyst. Eur. J. Sci. Res. 33:347–357.
  • Monshi, A., Foroughi, M. R., and Monshi, M. R. 2012. Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World J. Nano Sci. Eng. 2:154–160.
  • Obadiah, A., Swaroopa, G. A., Kumar, S. V., Jeganathan, K. R., and Ramasubbu, A. 2012. Biodiesel production from palm oil using calcined waste animal bone as catalyst. Bioresour. Technol. 116:512–516.
  • Phan, A. N., and Phan, T. M. 2008. Biodiesel production from waste cooking oils. Fuel 87:3490–3496.
  • Roschat, W., Kacha, M., Yoosuk, B., Sudyoadsuk, T., and Promarak, V. 2012. Bio-diesel production based on heterogeneous process catalyzed by solid waste coral fragment. Fuel 98:194–202.
  • Shafiei, F., Behroozibakhsh, M., Moztarzadeh, F., Haghbin-Nazarpak, M. and Tahriri, M. 2012. Nanocrystalline fluorine-substituted hydroxyapatite [Ca5(PO4)3(OH)1-xFx(0 ≤ x ≤ 1)] for biomedical applications: Preparation and characterization. Micro Nano Lett. 7:109–114.
  • Sharma, B., Rasid, U., Anwar, F., and Erhan, S. 2011. Lubricant properties of Moringa oil using thermal and tribological techniques. J. Therm. Anal. Calorim. 96:999–1008.
  • Smith, S. M., Oopathum, C., Weeramonkhonlert, V., Smith, C. B., Chaveanghong, S., Ketwong, P., and Boonyuen, S. 2013. Transesterification of soybean oil using bovine bone waste as new catalyst. Bioresour. Technol. 143:686–690.
  • Son, S. M., Kusakabe, K., and Guan, G. 2010. Biodiesel synthesis and properties from sunflower and waste cooking oils using CaO biocatalyst under reflux conditions. J. Appl. Sci. 10:3191–3198.
  • Viriya-empikul, N., Krasae, P., Nualpaeng, W., Yoosuk, B., and Faungnawakij, K. 2012. Bio-diesel production over Ca-based solid catalysts derived from industrial wastes. Fuel 92:239–244.
  • Zhang, L., Sheng, B., Xin, Z., Liu, Q., Sun, S. 2010. Kinetics of transesterification of palm oil and dimethyl carbonate for biodiesel production at the catalysis of heterogeneous base catalyst. Bioresour. Technol. 101:8144–8150.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.