543
Views
5
CrossRef citations to date
0
Altmetric
Articles

The environmental effects of coal-related activities

References

  • Ardebili, L., Babazadeh, V., and Mammadov, M. 2015. A study of geology and geochemistry of trace elements in central alborz coals, Northern Iran. J. Appl. Sci. 15:223–231.
  • Bhatt, B. I., and Vora, S. M. 2004. Stoichiometry, 4th Ed. New Delhi, India: Tata McGraw-Hill Publishing Company Limited.
  • Bilgen, S. 2014a. The determination of the chemical exergy values of indonesian biomass and biomass residues. J. Biobased Mater. Bio. 8:88–93.
  • Bilgen, S. 2014b. The estimation of chemical availability (Exergy) values for various types of coals in geographical regions of Turkey. Energy Sour. Part A 36:830–842.
  • Bilgen, S. 2014c. Structure and environmental impact of global energy consumption. Renew. Sustain. Energy Rev. 38:890–902.
  • Bilgen, S. 2014d. Comparison of physico-chemical properties of various coals as thermodynamics: First and second law analysis. Energy Sour. Part A 36:2347–2354.
  • Bilgen, S., Kaygusuz, K., and Sarı, A. 2008. Thermodynamic aspects of energy systems and sustainable development. Energy Sour. Part A 30:325–333.
  • Chen, G. Q., Gao, J. H., Xu, L. L., Fu, X. L., Yin, Y. J., Wu, S. H., and Qin, Y. K. 2012. Optimizing conditions for preparation of MnOx/RHA catalyst particle for the catalytic oxidation of NO. Adv. Powder Technol. 23:256–263.
  • Dai, S., Ren, D., Chou, C. L., Finkelman, R. B., Seredin, V. V., and Zhou, Y. 2012. Geochemistry of trace elements in Chinese Coals: A review of abundances, genetic types, impacts on human health, and industrial utilization. Int. J. Coal Geol. 94:3–21.
  • Deng, C. B., Wang, J. R., Wang, X. F., and Deng, H. Z. 2010. Spontaneous coal combustion producing carbon dioxide and water. Min. Sci. Technol. 20:82–87.
  • EIA. 2015. Energy Information Administration, Annual Energy Outlook: With projections to 2040.
  • Franco, A., and Diaz, A. R. 2009. The future challenges for clean coal technologies: Joining efficiency increase and pollutant emission control. Energy 34:348–354.
  • Gao, J. H., Liu, J. X., Gao, J. M., Du, Q., Wang, X., and Wu, S. 2009. Modeling and experimental study on agglomeration of particles from coal combustion in multistage spouted fluidized tower. Adv. Powder Technol. 20:375–382.
  • Gois, J. S., Pereira, E. R., Welz, B., and Borges, D. L. G. 2014. Simultaneous determination of bromine and chlorine in coal using electrothermal vaporization inductively coupled plasma mass spectrometry and direct solid sample analysis. Anal. Chim. Acta 852:82–87.
  • Huang, X., and Finkelman, R. B. 2008. Understanding the chemical properties of macerals and minerals in coal and its potential application for occupational lung disease prevention. J. Toxicol. Env. Heal. B 11:45–67.
  • Huggins, F. E. 2002. Overview of analytical methods for inorganic constituents in coal. Int. J. Coal Geol. 50:169–214.
  • IEA. 2014. International Energy Agency. Key World Energy Statistics.
  • IEA. 2015. International Energy Agency. Key World Energy Statistics.
  • Kreith, F., and Goswami, D. Y. (Eds.). 2005. The CRC Handbook of Mechanical Engineering, 2nd Ed. Florida, USA: CRC Press.
  • Laskowski, J. S. 2001. Coal Flotation and Fine Coal Utilization. Amsterdam, NLD: Elsevier Science B.V.
  • Liu, L., and Zhou, F. B. 2010. A comprehensive hazard evaluation system for spontaneous combustion of coal in underground mining. Int. J. Coal Geol. 82:27–36.
  • Luo, Z. M., De, J., and Yang, Y. B. 2007. Study on hydrogel material for sealing and filling in coalmine disaster zone. J. China Univ. Min. Technol. 36:748–751.
  • Ma, C. J., Kim, J. O., Kim, K. H., Tohno, S., and Kasahara, M. 2010. Specification of chemical properties of feed coal and bottom ash collected at a coal-fired power plant. Asian J. Atmos. Environ. 4:80–86.
  • Mastalerz, M., Solano-Acosta, W., Shimmelmann, A., and Drobniak, A. 2009. Effcets of coal storage in air on physical and chemical properties of coal and on gas adsorption. Int. J. Coal Geol. 79:167–174.
  • Osborne, D. (Ed.). 2013. The Coal Handbook: Towards Cleaner Production. Volume 1: Coal Production. Cambridge, UK: Woodhead Publishing Limited.
  • Qin, B. T., and Wang, D. M. 2007. Present situation and development of mine fire control technology. China. Saf. Sci. J. 12:80–85.
  • Qin, B. T., and Lu, Y. 2013. Experimental Research on Inorganic Solidified Foam for Sealing Air Leakage in Coal Mines. Int. J. Min. Sci. Technol. 23:151–155.
  • Quintero, J. A., Candela, S. A., Ríos, C. A., Montes, C., and Uribe, C. 2009. Spontaneous combustion of the upper paleocene cerrejón formation coal and generation of clinker in la guajira peninsula (Caribbean Region of Colombia). Int. J. Coal Geol. 80:196–210.
  • Reyes, F., Perez Alcazar, G. A., Barraza, J. M., Bohorquez, A., and Tabares, J. A. 2003. Quantification of pyritic sulfur of one colombian coal by mössbauer spectroscopy. Hyperfine Interact. 148/149:31–38.
  • Sajwan, K. S., Alva, A. K., and Keefer, R. F. (Eds.). 1999. Biogeochemistry of Trace Elements in Coal and Coal Combustion Byproduct. New York, USA: Kluwer Academic/Plenum Publishers.
  • Smith, K. L., Smoot, L. D., Fletcher, T. H., and Pugmire, R. J. 1994. The Structure and Reaction Processes of Coal. New York, USA: Springer Science+Business Media.
  • Speight, J. G. 2015. Handbook of Coal Analysis, 2nd Ed. New Jersey, USA: John Wiley & Sons, Inc.
  • Suarez-Ruiz, I., and Crelling, J. C. 2008. Applied Coal Petrology: The Role of Petrology in Coal Utilization. Burlington, USA: Elsevier Ltd.
  • Sun, M., Liu, G., Wu, Q., and Liu, W. 2013. Speciation analysis of inorganic arsenic in coal samples by microwave-assisted extraction and high performance liquid chromatography coupled to hydride generation atomic fluorescence spectrometry. Talanta 106:8–13.
  • Swaine, D. J., and Goodarzi, F. (Eds.). 1995. Environmental Aspects of Trace Elements in Coal. Dordrecht, NLD: Kluwer Academic Publishers.
  • Thomas, L. 2013. Coal Geology, 2nd Ed. Chichester, UK: John Wiley & Sons Ltd.
  • Wang, D. M., Ling, Z. H., and Qin, B. T. 2004. Development of a non-pollution material of environmental protection for mine fire control. J. China Univ. Min. Technol. 33:205–208.
  • Wang, W., Qin, Y., Wang, J., Li, J., and Weiss, D. J. 2010. A preliminary method for determining acceptable trace element levels in coal. Energy 35:70–76.
  • Xie, J., Zhong, W. Q., Jin, B. S., Shao, Y. J., and Huang, Y. J. 2013. Eulerian-lagrangian method for three-dimensional simulation of fluidized bed coal gasification. Adv. Powder Technol. 24:382–392.
  • Xu, M., Yan, R., Zheng, C., Qiao, Y., Han, J., and Sheng, C. 2003. Status of trace element emission in a coal combustion process: A review. Fuel Process Technol. 85:215–237.
  • Xu, Y. L., Wang, D. M., Wang, L. Y., Zhong, X. X., and Chu, T. X. 2012. Experimental research on inhibition performances of the sand-suspended colloid for coal spontaneous combustion. Safety Sci. 50:822–827.
  • Zhang, J., Zhao, Y., Ding, F., Zeng, H., and Zheng, C. 2007. Preliminary study of trace element emissions and control during coal combustion. Front Energy Power Eng. China 1:273–279.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.