161
Views
10
CrossRef citations to date
0
Altmetric
Articles

Phenol removal and bio-electricity generation using a single-chamber microbial fuel cell in saline and increased-temperature condition

, &

References

  • APHA, AWWA and WPCF. 2005. Standard Method for the Examination Water and Wastewater. Washington DC: APHA, AWWA, WPCF.
  • Box, J. D. 1983. Investigation of the Folin-Ciocalteau phenol reagent for the determination of polyphenolic substances in natural waters. Water Res. 17:511–525.
  • Choi J., and Liu, Y. 2014. Power generation and oil sands process-affected water treatment in microbial fuel cells. Bioresour. Technol. 169:581–587.
  • Delnavaz, M., Ayati, B., Ganjidoust, H., and Sanjabi, S. 2012. Kinetics study of photocatalytic process for treatment of phenolic wastewater by TiO2 nano powder immobilized on concrete surfaces. Toxicol. Environ. Chem. 94:1086–1098.
  • Deval, A., and Dikshit, A. K. 2013. Construction, working and standardization of microbial fuel cell. APCBEE Procedia 5:59–63.
  • Fang, H. H. P., Liang D. W., and Zhang T. 2006. Anaerobic treatment of phenol in wastewater underthermophilic condition. Water Res. 40:427–434.
  • Felföldi, T., Székely, A. J., Gorál, R., Barkács, K., Scheirich, G., András, J., and Márialigeti, K. 2010. Polyphasic bacterial community analysis of an aerobic activated sludge removing phenols and thiocyanate from coke plant effluent. Bioresour. Technol. 101:3406–3414.
  • Fernando, E., Keshavarz, T., and Kyazze, G. 2013. Simultaneous co-metabolic decolourisation of azo dye mixtures and bio-electricity generation under thermophillic (50°C) and saline conditions by an adapted anaerobic mixed culture in microbial fuel cells. Bioresour. Technol. 127:1–8.
  • Fu, D., Zhang, F., Wang, L., Yang, F., and Liang, X. 2015. Simultaneous removal of nitrobenzene and phenol by homogenous catalytic wet air oxidation. Chin. J. Catal. 36:952–956.
  • Grau, P., Dohanyas, M., and Chudoba, J. 1975. Kinetic of multicomponent substrate removal by activatedsludge. Water Res. 9:637–642.
  • Hamza, D., Mohammed, A., and Ibrahim, S. 2009. Kinetics of biological reduction of chemical oxygen demand from petroleum refinery wastewater. J. Res. 57:1–12.
  • Han, J., Du, Z., Zou, W., Li, H., and Zhang, C. 2015. In-situ improved phenol adsorption at ions-enrichment interface of porous adsorbent for simultaneous removal of copper ions and phenol. Chem. Eng. J. 262:571–578.
  • Hasanoğlu, A. 2013. Removal of phenol from wastewaters using membrane contactors: Comparative experimental analysis of emulsion pertraction. Desalination 309:171–180.
  • Kalathil, S., Lee, J., and Cho, M. H. 2012. Efficient decolorization of real dye wastewater and bioelectricity generation using a novel single chamber biocathode-microbial fuel cell. Bioresour. Technol. 119:22–27.
  • Kincannon, D. F., and Stover, E. L. 1982 Design methodology for fixed film reactors-RBC and biologicaltowers. Civil Eng. Pract. Des. Eng. 2:107–124.
  • Liu, H., Cheng, S., and Logan, B. E. 2005. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environ. Sci. Technol. 39:5488–5493.
  • Logan, B. 2008. Microbial Fuel Cells. Hoboken, N.J.: Wiley-Interscience.
  • Luo, H., Liu, G., Zhang, R., and Jin, S. 2009. Phenol degradation in microbial fuel cells. Chem. Eng. J. 147:259–264.
  • Mardanpour, M. M., Esfahany, M. N., Behzad, T., and Sedaqatvand, R. 2012. Single chamber microbial fuel cell with spiral anode for dairy wastewater treatment. Biosens. Bioelectron. 38:264–269.
  • Mook W. T., Chakrabarti M. H., Aroua M. K., Khan G. M. A., Ali B. S., Islam M. S., and Abu Hassan M. A. 2012. Removal of total ammonia nitrogen (TAN), nitrate and total organic carbon (TOC) from aquaculture wastewater using electrochemical technology: A review. Desalination 285:1–13.
  • Moussavi, G., Barikbin, B., and Mahmoudi, M. 2010. The removal of high concentrations of phenol from saline wastewater using aerobic granular SBR. Chem. Eng. J. 158:498–504.
  • Mukherjee, S., Basak, B., Bhunia, B., Dey, A., and Mondal, B. 2013. Potential use of polyphenol oxidases (PPO) in the bioremediation of phenolic contaminants containing industrial wastewater. Rev. Environ. Sci. Bio/Technol. 12:61–73.
  • Pandian, M., Huu-Hao, N. G. O., and Pazhaniappan, S. 2011. Substrate removal kinetics of an anaerobic hybrid reactor treating pharmaceutical wastewater. J.Water Sustainability 1:301–312.
  • Panwar, N. L., Kaushik, S. C., and Kothari, S. 2011. Role of renewable energy sources in environmental protection: A review. Renewable Sustainable Energy Rev. 15:1513–1524.
  • Prabhu, N. V., and Sangeetha, D. 2014. Characterization and performance study of sulfonated poly ether ether ketone/Fe3O4 nano composite membrane as electrolyte for microbial fuel cell. Chem. Eng. J. 243:564–571.
  • Rozendal, R. A., Hamelers, H. V., Rabaey, K., Keller, J., and Buisman, C. J. 2008. Towards practical implementation of bioelectrochemical wastewater treatment. Trends Biotechnol. 26:450–459.
  • Santoro, C., Ieropoulos, I., Greenman, J., Cristiani, P., Vadas, T., Mackay, A., and Li, B. 2013. Power generation and contaminant removal in single chamber microbial fuel cells (SCMFCs) treating human urine. Int. J. Hydrogen Energy 38:11543–11551.
  • Silva, W. P. N., do Nascimento, A. E. G., de Alencar Moura, M. C. P., de Oliveira, H. N. M., and de Barros Neto, E. L. 2015. Study of phenol removal by cloud point extraction: A process optimization using experimental design. Sep. Purif. Technol. 152:133–139.
  • Song, Y. H., An, B. M., Shin, J. W., and Park, J. Y. 2015. Ethanolamine degradation and energy recovery using a single air-cathode microbial fuel cell with various separators. Int. Biodeterior. Biodegrad. 754:1–6.
  • Sun J., Hu Y. Y., Bi Z., and Cao Y. Q. 2009. Simultaneous decolorization of azo dye and bioelectricity generation using a microfiltration membrane air-cathode single-chamber microbial fuel cell. Bioresour. Technol. 100:3185–3192.
  • Suzuki, H., Araki, S., and Yamamoto, H. 2015. Evaluation of advanced oxidation processes (AOP) using O3, UV, and TiO2 for the degradation of phenol in water. J. Water Process Eng. 7:54–60.
  • Tasic, Z., Gupta, V. K., and Antonijevic, M. M. 2014. The mechanism and kinetics of degradation of phenolics in wastewaters using electrochemical oxidation. Int. J. Electrochem. Sci. 9:3473–3490.
  • Vassão, D. G., Kim, K. W., Davin, L. B., and Lewis, N. G. 2010 Lignans (Neolignans) and allyl/propenyl phenols: Biogenesis, structural biology, and biological/human health considerations. Compr. Nat. Prod. II. 1:815–928.
  • Zhou, M., Yang, J., Wang, H., Jin, T., Hassett, D., and Gu, T. 2014. Bioelectrochemistry of microbial fuel cells and their potential applications in bioenergy. In: Bioenergy Research: Advances and Applications. Waltham, MA: Elsevier, pp. 131–147.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.