1,508
Views
57
CrossRef citations to date
0
Altmetric
Articles

Higher heating values of lignin types from wood and non-wood lignocellulosic biomasses

References

  • ASTM. 1988. Standard Test Method for Gross Calorific Value of Coal and Coke by the Adiabatic Bomb Calorimeter, Designation: D2015–85, Annual Book of ASTM Standards, vol. 05.02, ASTM, Philadelphia, PA, pp. 238–243.
  • Baker, A. J. 1982. Wood Fuel Properties and Fuel Products from Woods, In Proceedings of Fuelwood Management and Utilisation Seminar, Nov. 9–11, Michigan State University, East Lansing, MI.
  • Castellucci, S., and Clara, S. C., Celma, B. 2014. Energy characterization of residual biomass in Mediterranean Area for small biomass gasifiers in according to the European Standards. Appl. Math. Sci. 8:6621–6633.
  • Channiwala, S. A., and Parikh, P. P. 2002. A unified correlation for estimating HHV of solid. liquid and gaseous fuels. Fuel 81:1051–1063.
  • Cordero, T., Marquez, F., Rodriguez-Mirasol, J., and Rodriguez, J. 2001. Predicting heating values of lignocellulosic and carbonaceous materials from proximate analysis. Fuel 80:1567–1571.
  • del Rio, J. C., Gutierrez, A., Rodriguez, I. M., Ibarra, D., Martinez, A. T. 2007. Composition of non-woody plant lignins and cinnamic acids by Py-GC/MS, Py/TMAH and FT-IR. J. Anal. Appl. Pyrolysis 79:39–46.
  • Demirbas, A. 1997. Calculation of higher heating values of biomass fuels. Fuel 76:431–434.
  • Demirbas, A. 1998a. Combustion properties and calculation of higher heating values of diesel fuels. Petrol. Sci. Technol. 16:785–797.
  • Demirbas, A. 1998b. Fuel properties and calculation of higher heating values of vegetable oils. Fuel 77:1117–1120.
  • Demirbas, A. 2000. Mechanisms of liquefaction and pyrolysis reactions of biomass. Energy Convers. Manage. 41:633–646.
  • Demirbas, A. 2001. Relationships between lignin contents and heating values of biomass. Energy Convers. Manage. 42:183–188.
  • Demirbas, A. 2002a. Relationships between heating value and lignin, moisture, ash and extractive contents of biomass fuels. Energy Explor. Exploit. 20:105–111.
  • Demirbas, A. 2002b. Fuel characteristics of olive husk and walnut, hazelnut, sunflower and almond shells. Energy Sour. 24:215221.
  • Demirbas, A. 2003. Relationships between heating value and lignin, fixed carbon and volatile material contents of shells from biomass products. Energy Sour. 25:629–635.
  • Demirbas, A. 2004. Linear equations on thermal degradation products of wood chips in alkaline glycerol. Energy Convers. Manage. 45:983–994.
  • Demirbas, A. 2005. Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Prog. Energy Combust. Sci. 31:171–92.
  • Demirbas, A. 2009. Prediction of higher heating values for vegetable oils and animal fats from proximate analysis data. Energy Sour. Part A 31:1264–1270.
  • Demirbas, M. F. 2015. Global renewable energy policy. Energy Educ. Sci. Tech. D 7:15–40.
  • Demirbas, A. 2016. Characterization of lignin structure of wood and non-wood lignocellulosic plants. Energy Educ. Sci. Tech. C 8:81–92
  • Demirbas, A., Gullu, D., Caglar, A., and Akdeniz, F. 1997. Estimation of calorific values of fuel from lignocellulosics. Energy Sour. 19:765–770.
  • Demirbas, A., and Ghamdi K. 2015.Relationships between specific gravities and higher heating values of petroleum components. Petrol. Sci. Technol. 33:732–740.
  • Fengel, D., and Wegener, G. 1983. Wood Chemistry, Ultrastructure, Reactions. Berlin: Walter de Gruyter, Chap 3, p. 26; 132.
  • Haz, A., Jablonsky, M., Strizincova, P., Majavo, V., SSKulcova, A., and Surina, I. 2016. Content of phenolic hydroxyl groups in lignin: Characterisation of 23 isolated non-wood lignin with various acids. Int. J. Sci. Res. 7:11547–11551.
  • Garcia, R., Pizzaro, C., Lavin, A. G., and Bueno, J. L. 2014. Spanish biofuels heating value estimation. Part I: Proximate analysis. Fuel 117:1130–1138.
  • Garcia, R., Pizzaro, C., Lavin, A. G., and Bueno, J. L. 2014. Spanish biofuels heating value estimation. Part II: Proximate anal data. Fuel 117:1139–1147.
  • Jahana, M. S., Chowdhury, D. A. N., Islam, M. K., and Moeiz, S. M. I. 2007. Characterization of lignin isolated from some nonwood available in Bangladesh. Bioresour. Technol. 98:465–469.
  • Jiménez, L., and Gonzalez, F. 1991. Study of physical and chemical properties of lignocellulosic residues with a view to the production of fuels. Fuel 70:947–950.
  • Parikh, J., Channiwala, S. A., and Ghosal, G. K. 2005. A correlation for calculating HHV from proximate analysis of solid fuels. Fuel 2005;84:487–494.
  • Parikh, J., Channiwala, S. A., and Ghosal, G. K. 2007. A correlation for calculating elemental composition from proximate analysis of biomass materials. Fuel 86:1710–1719.
  • Phichai, K., Pragrobpondee, P., Khumpart, T., and Hirunpraditkoon, S. 2013. Prediction heating values of lignocellulosics from biomass characteristics. Int. J. Chem. Mol. Nucl. Mater. Metal. Eng. 7:532–535.
  • Picart, P., Wiermans, L., Pérez-Sánchez, M., Grande, P. M., Schallmey, A., and Domínguez de María, P. 2016. Assessing lignin types to screen novel biomass-degrading microbial strains: Synthetic lignin as useful carbon source. ACS Sustainable Chem. Eng. 4:651–655.
  • Rydholm, S. A. 1965. Pulping Processes. New York: Interscience Publishers.
  • Saidur, R., Abdelaziz, E. A., Demirbas, A., Hossain, M. S., and Mekhilef, S. 2011. Review on biomass as a fuel for boilers. Renewable Sustainable Energy Rev. 15 2262–2289.
  • Sakakibara, A. 1983. Chemical structure of lignin related mainly to degradation products. In: Recent Advances in Lignin Biodegradation Research, Higuchi, T., Chang, H. M., and Kirk, T. K. (Eds.). Tokyo: UNI Publisher, p. 125.
  • Sheng, C., and Azevedo, J. L. T. 2005. Estimating the higher heating value of biomass fuels from basic analysis data. Biomass Bioenergy 28:499–507.
  • TAPPI (US Technical Association of Pulp and Paper Industry). 2006. Acid insoluble lignin in wood and pulp, T222 om–06.
  • Telmo, C., and Lousada, J. 2011. The explained variation by lignin and extractive contents on higher heating value of wood. Biomass Bioenergy 35:1663–1667.
  • Tillman, D. A. 1978. Wood as an Energy Resource. New York: Academic Press.
  • Todorciuc, T., Căpraru, A-M., Kratochvílová, I., and Popa, V. I. 2009. Characterization of non-wood lignin and its hydoxymethylated derivatives by spectroscopy and self-assembling investigations. Cellulose Chem. Technol. 43:399–408.
  • Wenzl, H. F. J., Brauns, F. E., and Brauns, D. A. 1970. The Chemical Technology of Wood. New York: Academic Press.
  • White, R. H. 1987. Effect of lignin content and extractives on the higher heating value of wood. Wood Fiber Sci. 19:446–452.
  • Yin, Y. 2011. Prediction of higher heating values of biomass from proximate and ultimate analyses. Fuel 90:1128–1132.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.