307
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Investigation of explosibility characteristics of some Turkish lignite coal dusts

&

References

  • Abbasi, T., and S. A. Abbasi. 2007. Dust explosions-cases, causes, consequences, and control. J Hazard Mater 140 (1–2):7–44.
  • Amyotte, P. R., and R. K. Eckhoff. 2010. Dust explosion causation, prevention and mitigation: An overview. Journal of Chemical Health and Safety 17 (1):15–28.
  • BS EN 14034-1. 2004. Determination of the maximum explosion pressure Pmax of dust clouds - Part: 1 Determination of the maximum explosion pressure Pmax of dust clouds. London: British Standards.
  • BS EN 14034-2. 2006. Determination of the maximum rate of explosion pressure rise (dpdt)max of dust clouds - Part:2 Determination of the maximum rate of explosion pressure rise (d p/d t)max of dust clouds. London: British Standards.
  • BS EN 14034-3. 2004. Determination of explosion characteristics of dust clouds - Part 3 Determination of the lower explosion limit LEL of dust clouds. London: British Standards.
  • BS EN 14034-4. 2004. Determination of explosion characteristics of dust clouds - Part 4 Determination of the limiting oxygen concentration LOC of dust clouds. London: British Standards.
  • BS EN 14491. 2006. Dust explosion venting protective systems. London: British Standards.
  • Cao, W., W. Gao, J. Liang, S. Xu, and F. Pan. 2014. Flame-propagation behavior and a dynamic model for the thermal-radiation effects in coal-dust explosions. Journal of Loss Prevention in the Process Industries 29:65–71.
  • Cashdollar, K. L., M. J. Sapko, E. S. Weiss, M. L. Harris, C. K. Man, S. P. Harteis, and G. M. Green. 2010. Recommendations for a New Rock Dusting Standard to Prevent Coal Dust Explosions in Intake Airways. Pittsburgh, PA: Centers for Disease Control and Prevention National Institute for Occupational Safety and Health Office of Mine Safety and Health Research.
  • Chunmiao, Y., L. Chang, and L. Gang. 2011. Coal dust explosion prevention and protection based on inherent safety. Procedia Engineering 26:1517–25.
  • Continillo, G., S. Crescitelli, E. Fumo, F. Napolitano, and G. Russo. 1991. Coal dust explosions in a spherical bomb. Journal of Loss Prevention in the Process Industries 4:223–29.
  • DEKRA. 2016. The report prepared at the end of the study by DEKRA. DEKRA EXAM GmbH.
  • Ediz, T. G., A. Görgülü, and W. D. Dixon. 1993. kömür tozu patlamalarının ilerlemesinin durdurulması için yeni bir yaklaşım, Turkey XIII. Mining congress (in Turkish), İstanbul, Turkey.
  • Frazer, J. C. W., A. Larsen, F. Haas, and C. Scholz. 1910. Explosibility of Coal Dust. Washington, USA: Government Printing Ofiice.
  • Houim, R. W., and E. S. Oran. 2015. Numerical simulation of dilute and dense layered coal-dust explosions. Proceedings of the Combustion Institute 35 (2):2083–90.
  • Inci, U. 1998. Lignite and carbonate deposition in middle lignite succession of the Soma Formation, Soma coalfield, western Turkey. International Journal of Coal Geology 37:287–313.
  • Inci, U. 2002. Depositional evolution of Miocene coal successions in the Soma coalfield, western Turkey. International Journal of Coal Geology 51:1–29.
  • ISO 6184-1. 1985. Explosion protection systems Part 1: Determination of explosion indices of combustible dusts in air Geneva, Swiss: International Organisation for Standardization, Technical Committee ISO/TC 21, Equipment for fire protection and fire fighting..
  • Karayigit, A. I. 1998. Thermal Effects of a Basaltic Intrusion on the Soma Lignite Bed in West Turkey. Energy Sources 20 (1):55–66.
  • Karayigit, A. I., and R. A. Gayer. 2000. Trace elements in a pliocene-pleistocene lignite profile from the Afsin-Elbistan field, eastern Turkey. Energy Sources 22 (1):13–21.
  • Karayigit, A. I., and M. K. G. Whateley. 1997. properties of a lacustrine subbituminous (k1) seam, with special reference to the contact metamorphism, Soma-Turkey. International Journal of Coal Geology 34:131–55.
  • Krasnyansky, M. 2006. Prevention and suppression of explosions in gas-air and dust-air mixtures using powder aerosol-inhibitor. Journal of Loss Prevention in the Process Industries 19 (6):729–35.
  • Kuai, N., et al. 2013. Experiment-based investigations on the effect of ignition energy on dust explosion behaviors. Journal of Loss Prevention in the Process Industries 26 (4):869–77.
  • Li, Q., et al. 2016. Experimental research of particle size and size dispersity on the explosibility characteristics of coal dust. Powder Technology 292:290–97.
  • Madencilik, T. 2014. Dünyanın En Büyük 10 Kömür Madeni Kazası (in Turkish), 102–03. Madencilik Türkiye. Ankara, Turkey: General Directorate of Mineral Research and Exploration Publication.
  • Mittal, M. 2013. Limiting oxygen concentration for coal dusts for explosion hazard analysis and safety. Journal of Loss Prevention in the Process Industries 26 (6):1106–12.
  • Murphy, M. M., E. C. Westman, A. Iannacchione, and T. M. Barczak. 2012. Relationship between radiated seismic energy and explosive pressure for controlled methane and coal dust explosions in an underground mine. Tunnelling and Underground Space Technology 28:278–86.
  • Nagy, J., W. Conn, and H. C. Verakis. 1969. Explosion development in a spherical vessel. Washington, USA: U. S. Dept. of the Interior, Bureau of Mines.
  • Nebert, K. 1978. Tavşanlı’nın Batı Ve Kuzeyindeki Linyit İhtiva Eden Neojen Sahasının Mukayeseli Stratigrafisi Ve Tektoniği (in Turkish). Ankara, Turkey: Mineral Research and Exploration Institute.
  • NFPA 68. 2007. Standard-on-Explosion-Protection-by-Deflagration-Venting. Quincy, USA: An International Codes and Standards Organization.
  • NFPA 69. 2014. Standard on Explosion Prevention Systems. Quincy, USA: An International Codes and Standards Organization.
  • NFPA 654. 2017. Standard for the prevention of fire and dust explosions from the manufacturing, processing, and handling of combustible particulate solids. Quincy, USA: An International Codes and Standards Organization.
  • Norman, F., J. Berghmans, and F. Verplaetsen. 2012. The Dust explosion characteristics of coal dust in an oxygen enriched atmosphere. Procedia Engineering 45:399–402.
  • Saltoğlu, S. 1971b. Zonguldak Havzası Kömür Tozlarının Patlama Karakteristiklerinin Tesbiti ve Kömür Tozu Patlamalarının Taş Tozu ile Önlenmesi Üzerie Yapılan Etüd (in Turkish). Zonguldak, Turkey: Ereğli Coal Enterprises Publication.
  • Tuncalı, E., et al. 2002. Türkiye Tersiyer Kömürlerinin Kimyasal ve Teknolojik Özellikleri (in Turkish). Ankara, Turkey: General Directorate of Mineral Research and Exploration Publication..
  • Unalan, G. 2013. Kömür Jeolojisi (in Turkish). Ankara: MTA.
  • Wangsholm, E. 2012. An Experimental study on the influence of the particle size of chemically active inhibitors in turbulent combustion.
  • Yuan, Z., N. Khakzad, F. Khan, and P. Amyotte. 2015. Dust explosions: A threat to the process industries. Process Safety and Environmental Protection 98:57–71.
  • Zheng, Y.-P., et al. 2009. A statistical analysis of coal mine accidents caused by coal dust explosions in China. Journal of Loss Prevention in the Process Industries 22 (4):528–32.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.