130
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Remediation of lime-free roasting chromite ore processing residue (COPR) by water leaching and pyrolysis process

, , &

References

  • Elzinga, E. J., and A. Cirmo. 2010. Application of sequential extractions and X-ray absorption spectroscopy to determine the speciation of chromium in Northern New Jersey marsh soils developed in chromite ore processing residue (COPR). Journal of Hazardous Materials 183 (1–3):145–54. doi:10.1016/j.jhazmat.2010.06.130.
  • Jagupilla, S. C., D. H. Moon, M. Wazne, C. Christodoulatos, and M. G. Kim. 2009. Effects of particle size and acid addition on the remediation of chromite ore processing residue using ferrous sulfate. Journal of Hazardous Materials 168 (1):121–28. doi:10.1016/j.jhazmat.2009.02.012.
  • Jagupilla, S. C., M. Wazne, and D. H. Moon. 2015. Assessment of ferrous chloride and Portland cement for the remediation of chromite ore processing residue. Chemosphere 136:95–101. doi:10.1016/j.chemosphere.2015.04.050.
  • Kleynhans, E. L. J., B. W. Neizel, J. P. Beukes, and P. G. Van Zyl. 2016. Utilisation of pre-oxidised ore in the pelletised chromite pre-reduction process. Minerals Engineering 92:114–24. doi:10.1016/j.mineng.2016.03.005.
  • Li, H., Z. Zhang, and Z. Liu. 2017. Application of artificial neural networks for catalysis: A review. Catalysts 7 (10):306. doi:10.3390/catal7100306.
  • Li, Y., A. B. Cundy, J. Feng, H. Fu, X. Wang, and Y. Liu. 2017. Remediation of hexavalent chromium contamination in chromite ore processing residue by sodium dithionite and sodium phosphate addition and its mechanism. Jounal of Environment Management 192:100–06. doi:10.1016/j.jenvman.2017.01.031.
  • Liao, C. Z., Y. Tang, P. H. Lee, C. Liu, K. Shih, and F. Li. 2017. Detoxification and immobilization of chromite ore processing residue in spinel-based glass-ceramic. Journal of Hazardous Materials 321:449–55. doi:10.1016/j.jhazmat.2016.09.035.
  • Matern, K., H. Kletti, and T. Mansfeldt. 2016. Chemical and mineralogical characterization of chromite ore processing residue from two recent Indian disposal sites. Chemosphere 155:188–95. doi:10.1016/j.chemosphere.2016.04.009.
  • Matern, K., H. Weigand, A. Singh, and T. Mansfeldt. 2017. Environmental status of groundwater affected by chromite ore processing residue (COPR) dumpsites during pre-monsoon and monsoon seasons. Environment Science Pollution Ressearch 24 (4):3582–92. doi:10.1007/s11356-016-8110-2.
  • Molino, A., S. Chianese, and D. Musmarra. 2016. Biomass gasification technology: The state of the art overview. Journal of Energy Chemistry 25 (1):10–25. doi:10.1016/j.jechem.2015.11.005.
  • Moon, D. H., M. Wazne, A. Koutsospyros, C. Christodoulatos, H. Gevgilili, M. Malik, and D. M. Kalyon. 2009. Evaluation of the treatment of chromite ore processing residue by ferrous sulfate and asphalt. Journal of Hazardous Materials 166 (1):27–32. doi:10.1016/j.jhazmat.2008.09.079.
  • Patterson, R. R., and S. Fendorf. 1997. Reduction of hexavalent chromium by amorphous iron sulfide Environment Science Technology 31:2039–44. doi:10.1021/es960836v.
  • Velasco, A., M. Ramirez, S. Hernandez, W. Schmidt, and S. Revah. 2012. Pilot scale treatment of chromite ore processing residue using sodium sulfide in single reduction and coupled reduction/stabilization processes. Journal of Hazardous Materials 207–208:97–102. doi:10.1016/j.jhazmat.2011.04.012.
  • Wang, T., M. He, and Q. Pan. 2007. A new method for the treatment of chromite ore processing residues. Journal of Hazardous Materials 149 (2):440–44. doi:10.1016/j.jhazmat.2007.04.009.
  • Wang, T., and Z. Li. 2004. High-temperature reduction of chromium (VI) in solid alkali. Journal of Hazarous Materials 112 (1–2):63–69. doi:10.1016/j.jhazmat.2004.03.022.
  • Wang, X., J. Zhang, L. Wang, J. Chen, H. Hou, J. Yang, and X. Lu. 2017. Long-term stability of FeSO4 and H2SO4 treated chromite ore processing residue (COPR): Importance of H+ and SO42-. Journal of Hazardous Materials 321:720–27. doi:10.1016/j.jhazmat.2016.09.048.
  • Watts, M. P., V. S. Coker, S. A. Parry, R. A. Pattrick, R. A. Thomas, R. Kalin, and J. R. Lloyd. 2015. Biogenic nano-magnetite and nano-zero valent iron treatment of alkaline Cr(VI) leachate and chromite ore processing residue. Applied Geochemistry 54:27–42. doi:10.1016/j.apgeochem.2014.12.001.
  • Wu, C., H. Zhang, P. He, and L. Shao. 2010. Thermal stabilization of chromium slag by sewage sludge: Effects of sludge quantity and temperature. Journal of Environmental Sciences 22 (7):1110–15. doi:10.1016/S1001-0742(09)60225-4.
  • Wu, J., C. Li, and F. Yang. 2015. The disposition of chromite ore processing residue (COPR) incorporating industrial symbiosis. Journal of Cleaner Production 95:156–62. doi:10.1016/j.jclepro.2015.02.041.
  • Zhang, D., S. He, L. Dai, X. Hu, D. Wu, K. Peng, G. Bu, H. Pang, and H. Kong. 2009. Treatment of chromite ore processing residue by pyrolysis with rice straw. Chemosphere 77 (8):1143–45. doi:10.1016/j.chemosphere.2009.08.023.
  • Zhang, D., S. He, L. Dai, Y. Xie, D. Wu, G. Bu, K. Peng, and H. Kong. 2009. Impact of pyrolysis process on the chromium behavior of COPR. Journal of Hazardous Materials 172 (2–3):1597–601. doi:10.1016/j.jhazmat.2009.08.032.
  • Zhang, D., H. Kong, D. Wu, S. He, Z. Hu, and X. Hu. 2009. Remediation of chromite ore processing residue by pyrolysis process with sewage sludge. Bioresource Technology 100 (11):2874–77. doi:10.1016/j.biortech.2009.01.003.
  • Zhang, D. L., M. Y. Zhang, C. H. Zhang, Y. J. Sun, X. Sun, and X. Z. Yuan. 2016. Pyrolysis treatment of chromite ore processing residue by biomass: cellulose pyrolysis and Cr(VI) reduction behavior. Environment Science Technology 50:3111–18. doi:10.1021/acs.est.5b05707.
  • Zhang, Z., J. Cai, F. Chen, H. Li, W. Zhang, and W. Qi. 2018. Progress in enhancement of CO2 absorption by nanofluids: A mini review of mechanisms and current status. Renewable Energy 118:527–35. doi:10.1016/j.renene.2017.11.031.
  • Zhao, Q., C. Liu, D. Yang, P. Shi, M. Jiang, B. Li, H. Saxén, and R. Zevenhoven. 2017. A cleaner method for preparation of chromium oxide from chromite. Process Safety and Environmental Protection 105:91–100. doi:10.1016/j.psep.2016.09.017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.