437
Views
62
CrossRef citations to date
0
Altmetric
Articles

Short-term wind speed prediction based on improved PSO algorithm optimized EM-ELM

, &

References

  • Baloch, M. H., J. Wang, and G. S. Kaloi. 2016. Stability and nonlinear controller analysis of wind energy conversion system with random wind speed. International Journal of Electrical Power & Energy Systems 79 (11):75–83. doi:10.1016/j.ijepes.2016.01.018.
  • Cadenas, E., W. Rivera, R. Campos-Amezcua, and C. Heard. 2016. Wind speed prediction using a univariate ARIMA model and a multivariate NARX Model. Energies 9 (2):109. doi:10.3390/en9020109.
  • Chang, C. W., H. J. Lu, Y. R. Chang, and Y. D. Lee. 2017. An improved neural network-based approach for short-term wind speed and power forecast. Renewable Energy 105:301–11. doi:10.1016/j.renene.2016.12.071.
  • Ding, S., H. Zhao, Y. Zhang, X. Xu, and R. Nie. 2015. Extreme learning machine: Algorithm, theory and applications. Artificial Intelligence Review 44 (1):103–15. doi:10.1007/s10462-013-9405-z.
  • Dong, Q., Y. Sun, and P. Li. 2017. A novel forecasting model based on a hybrid processing strategy and an optimized local linear fuzzy neural network to make wind power forecasting: A case study of wind farms in China. Renew Energy 102:241–57. doi:10.1016/j.renene.2016.10.030.
  • Du, J., Y. Liu, Y. Yu, and W. Yan. 2017a. A prediction of precipitation data based on support vector machine and particle swarm optimization (PSO-SVM) algorithms. Algorithms 10 (2):57. doi:10.3390/a10020057.
  • Du, P., J. Z. Wang, Z. H. Guo, and W. D. Wang. 2017b. Research and application of a novel hybrid forecasting system based on multi-objective optimization for wind speed forecasting. Energy Conversion & Management 150:90–107. doi:10.1016/j.enconman.2017.07.065.
  • Du, P., J. Z. Wang, W. D. Yang, and T. Niu. 2018. Multi-step ahead forecasting in electrical power system using a hybrid forecasting system. Renewable Energy 122:533–50. doi:10.1016/j.renene.2018.01.113.
  • Erdem, E., and J. Shi. 2011. ARMA based approaches for forecasting the tuple of wind speed and direction. Applied Energy 88 (4):1405–14. doi:10.1016/j.apenergy.2010.10.031.
  • Eshtay, M., H. Faris, and N. Obeid. 2018. Improving extreme learning machine by competitive swarm optimization and its application for medical diagnosis problems. Expert Systems with Applications 104:134–52. doi:10.1016/j.eswa.2018.03.024.
  • Feng, G. R., G. B. Huang, Q. P. Lin, and R. Gay. 2009. Error minimized extreme learning machine with growth of hidden nodes and incremental learning. IEEE Transactions on Neural Networks 20 (8):1352–57. doi:10.1109/TNN.2009.2024147.
  • Gani, A., K. Mohammadi, S. Shamshirband, T. A. Altameem, D. Petkovic, and S. Ch. 2016. A combined method to estimate wind speed distribution based on integrating the support vector machine with firefly algorithm. Environmental Progress & Sustainable Energy 35 (3):867–75. doi:10.1002/ep.12262.
  • Hasanuzzaman, M., U. S. Zubir, N. I. Ilham, and S. Che. 2017. Global electricity demand, generation, grid system, and renewable energy polices: A review: Global electricity demand, generation, grid system, and renewable energy polices. Wiley Interdisciplinary Reviews Energy & Environment 6 (3):e222. doi:10.1002/wene.222.
  • Huang, G. B., and L. Chen. 2007. Convex incremental extreme learning machine. Neurocomputing 70:3056–62. doi:10.1016/j.neucom.2007.02.009.
  • Huang, G. B., and L. Chen. 2008. Enhanced random search based incremental extreme machine. Neurocomputing 71:3460–68. doi:10.1016/j.neucom.2007.10.008.
  • Huang, G. B., L. Chen, and C. K. Siew. 2006b. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Transactions on Neural Network 17 (4):879–92. doi:10.1109/TNN.2006.875977.
  • Huang, G. B., H. Zhou, X. Ding, and R. Zhang. 2012. Extreme learning machine for regression and multiclass classification. Systems, Man, and Cybernetics, Part B: IEEE Transactions on Cybernetics 42 (2):513–29. doi:10.1109/TSMCB.2011.2168604.
  • Huang, G. B., Q. Y. Zhu, and C. K. Siew. 2006a. Extreme learning machine: Theory and applications. Neurocomputing 70 (1–3):489–501. doi:10.1016/j.neucom.2005.12.126.
  • Jiang, H. 2018. Model forecasting based on two-stage feature selection procedure using orthogonal greedy algorithm. Applied Soft Computing 63:110–23. doi:10.1016/j.asoc.2017.11.047.
  • Kadhem, A. A., N. I. A. Wahab, I. Aris, J. Jasni, and A. N. Abdalla. 2017. Advanced wind speed prediction model based on a combination of weibull distribution and an artificial neural network. Energies 10 (11):1744. doi:10.3390/en10111744.
  • Kirbas, I., and A. Kerem. 2016. Short-term wind speed prediction based on artificial neural network models. Measurement & Control 49 (6):183–90. doi:10.1177/0020294016656891.
  • Lan, Y., Y. C. Soh, and G. B. Huang. 2010. Two-stage extreme learning machine for regression. Neurocomputing 73 (16):3028–38. doi:10.1016/j.neucom.2010.07.012.
  • Leuenberger, M., and M. Kanevski 2014. “Feature selection in environmental data mining combining simulated annealing and extreme learning machine.” 22nd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, 601–06.
  • Li, C. S., Z. G. Xiao, X. Xia, W. Zou, and C. Zhang. 2018. A hybrid model based on synchronous optimisation for multi-step short-term wind speed forecasting. Applied Energy 215:131–44. doi:10.1016/j.apenergy.2018.01.094.
  • Li, K., and Y. Han. 2018. Modelling for motor load torque with dynamic load changes of beam pumping units based on a serial hybrid model. Transactions of the Institute of Measurement and Control 40 (3):603–917. doi:10.1177/0142331216670454.
  • Li, K., Y. Han, and T. Wang. 2018. A novel prediction method for down-hole working conditions of the beam pumping unit based on 8-directions chain codes and online sequential extreme learning machine. Journal of Petroleum Science and Engineering 160:285–301. doi:10.1016/j.petrol.2017.10.052.
  • Li, T. Z., Y. X. Li, and X. L. Yang. 2017. Rock burst prediction based on genetic algorithms and extreme learning machine. Journal of Central South University 24 (9):2105–13. doi:10.1007/s11771-017-3619-1.
  • Lipu, M. S. H., M. A. Hannan, A. Hussain, and M. H. M. Saad. 2017. Optimal BP neural network algorithm for state of charge estimation of lithium-ion battery using PSO with PCA feature selection. Journal of Renewable & Sustainable Energy 9 (6):064102. doi:10.1063/1.5008491.
  • Liu, H., X. W. Mi, and Y. F. Li. 2018. An experimental investigation of three new hybrid wind speed forecasting models using multi-decomposing strategy and ELM algorithm. Renewable Energy 123:694–705. doi:10.1016/j.renene.2018.02.092.
  • Ma, X. J., Y. Jin, and Q. L. Dong. 2017. A generalized dynamic fuzzy neural network based on singular spectrum analysis optimized by brain storm optimization for short-term wind speed forecasting. Applied Soft Computing 54:296–312. doi:10.1016/j.asoc.2017.01.033.
  • Niu, B., H. Huang, B. Ye, L. Tan, and J. J. Liang 2014. “Fully learned multi-swarm particle swarm optimization.” 5th International Conference on Swarm Intelligence (ICSI), 150–57. doi:10.1177/1753193414524689
  • Pu, D. M., D. Q. Gao, T. Ruan, and Y. B. Yuan. 2017. A novel learning algorithm of single-hidden-layer feedforward neural networks. Neural Computing and Applications 28:719–26. doi:10.1007/s00521-016-2372-y.
  • Ren, H. J., X. Lei, and P. Zhang. 2016. A study of wind speed prediction based on particle swarm algorithm to optimize the parameters of sparse least squares support vector. International Journal of Simulation: Systems, Science and Technology 17 (30):1–7.
  • Rong, Y. M., G. J. Zhang, Y. Chang, and Y. Huang. 2016. Integrated optimization model of laser brazing by extreme learning machine and genetic algorithm. International Journal of Advanced Manufacturing Technology 87:2943–50. doi:10.1007/s00170-016-8649-6.
  • Santamaria-Bonfil, G., A. Reyes-Ballesteros, and C. Gershenson. 2016. Wind speed forecasting for wind farms: A method based on support vector regression. Renewable Energy 85:790–809. doi:10.1016/j.renene.2015.07.004.
  • Song, J. J., J. Z. Wang, and H. Y. Lu. 2018. A novel combined model based on advanced optimization algorithm for short-term wind speed forecasting. Applied Energy 215:643–58. doi:10.1016/j.apenergy.2018.02.070.
  • Sun, W., and M. H. Liu. 2016. Wind speed forecasting using FEEMD echo state networks with RELM in Hebei, China. Energy Conversion and Management 114:197–208. doi:10.1016/j.enconman.2016.02.022.
  • Tian, C. S., and Y. Hao. 2018. A novel nonlinear combined forecasting system for short-term load forecasting. Energies 11 (4):712. doi:10.3390/en11040712.
  • Tian, Z. D., S. J. Li, Y. H. Wang, et al. 2017. A prediction method based on wavelet transform and multiple models fusion for chaotic time series. Chaos, Solitons & Fractals 98:158–72. doi:10.1016/j.chaos.2017.03.018.
  • Tian, Z. D., S. J. Li, Y. H. Wang, and X. D. Wang. 2018. Wind power prediction method based on hybrid kernel function support vector machine. Wind Engineering 42 (3):252–64. doi:10.1177/0309524X17737337.
  • Wang, C. R., R. F. Xu, S. J. Lee, et al. 2018. Network intrusion detection using equality constrained-optimization-based extreme learning machines. Knowledge-Based Systems 147:68–80. doi:10.1016/j.knosys.2018.02.015.
  • Wang, J. Z., and J. M. Hu. 2015. A robust combination approach for short-term wind speed forecasting and analysis - combination of the ARIMA (Autoregressive Integrated Moving Average), ELM (Extreme Learning Machine), SVM (Support Vector Machine) and LSSVM (Least Square SVM) forecasts using a GPR (Gaussian Process Regression) model. Energy 93:41–56.
  • Wang, J. Z., T. Niu, H. Y. Lu, Z. H. Guo, W. D. Yang, and P. Du. 2018a. An analysis-forecast system for uncertainty modeling of wind speed: A case study of large-scale wind farms. Applied Energy 211:492–512. doi:10.1016/j.apenergy.2017.11.071.
  • Wang, J. Z., W. D. Yang, P. Du, and Y. F. Li. 2018b. Research and application of a hybrid forecasting framework based on multi-objective optimization for electrical power system. Energy 148:59–78. doi:10.1016/j.energy.2018.01.112.
  • Wang, J. Z., W. D. Yang, P. Du, and T. Niu. 2018c. A novel hybrid forecasting system of wind speed based on a newly developed multi-objective sine cosine algorithm. Energy Conversion and Management 163:134–50. doi:10.1016/j.enconman.2018.02.012.
  • Wang, W., and R. Zhang 2012. “Improved convex incremental extreme learning machine based on enhanced random search.” Proceedings of the 2012 International Conference on Electrical and Electronics Engineering, 2033–40.
  • Wang, Y., Z. X. Xie, and Q. H. Hu. 2018. Correlation aware multi-step ahead wind speed forecasting with heteroscedastic multi-kernel learning. Energy Conversion and Management 163:384–406. doi:10.1016/j.enconman.2018.02.034.
  • Wong, K. I., and P. K. Wong. 2018. Adaptive air-fuel ratio control of dual-injection engines under biofuel blends using extreme learning machine. Energy Conversion & Management 165:66–75. doi:10.1016/j.enconman.2018.03.044.
  • Yang, J. X., Y. F. Cheng, and J. T. Huang. 2016. A novel short-term multi-input-multi-output prediction model of wind speed and wind power with LSSVM based on quantum-behaved particle swarm optimization algorithm. Chemical Engineering Transactions 59:871–76.
  • Yang, W. A., Q. Zhou, and K. L. Tsui. 2016. Differential evolution-based feature selection and parameter optimisation for extreme learning machine in tool wear estimation. International Journal of Production Research 54 (15):4703–21. doi:10.1080/00207543.2015.1111534.
  • Yu, C. J., Y. L. Li, H. Y. Xiang, and M. Zhang. 2018. Data mining-assisted short-term wind speed forecasting by wavelet packet decomposition and Elman neural network. Journal of Wind Engineering and Industrial Aerodynamics 175:136–43. doi:10.1016/j.jweia.2018.01.020.
  • Yu, C. J., Y. L. Li, and M. J. Zhang. 2017. An improved wavelet transform using singular spectrum analysis for wind speed forecasting based on elman neural network. Energy Conversion and Management 148:895–904. doi:10.1016/j.enconman.2017.05.063.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.