284
Views
1
CrossRef citations to date
0
Altmetric
Articles

Effect of phosphoric acid and acetic acid addition on the hydrogen evolution using Ni based catalyst prepared in ethanol, methanol, and water solvents

ORCID Icon &
Pages 2442-2450 | Received 11 Mar 2018, Accepted 01 Jul 2018, Published online: 24 Jul 2018

References

  • Akdim, O., U. B. Demirci, and P. Miele. 2009. Highly Efficient Acid-Treated Cobalt Catalyst for Hydrogen Generation from NaBH4 Hydrolysis. International Journal of Hydrogen Energy 34 (11):4780–87. doi:10.1016/j.ijhydene.2009.04.009.
  • Balbay, A., and Ö. Şahin. 2014. Hydrogen Production from Sodium Borohydride in Boric Acid-Water Mixtures. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 36 (11):1166–74. doi:10.1080/15567036.2011.618818.
  • Brack, P., S. E. Dann, and K. G. U. Wijayantha. 2015. Heterogeneous and Homogenous Catalysts for Hydrogen Generation by Hydrolysis of Aqueous Sodium Borohydride (NaBH4) Solutions. Energy Science & Engineering 3 (3):174–88. doi:10.1002/ese3.67.
  • Chen, Y. 1998. Chemical Preparation and Characterization of Metal–Metalloid Ultrafine Amorphous Alloy Particles. Catalysis Today 44 (1–4):3–16. doi:10.1016/S0920-5861(98)00169-2.
  • Feng, Y., H. Yin, A. Wang, T. Xie, and T. Jiang. 2012. Selective Hydrogenation of Maleic Anhydride to Succinic Anhydride Catalyzed by Metallic Nickel Catalysts. Applied Catalysis A: General 425:205–12. doi:10.1016/j.apcata.2012.03.023.
  • Fernandes, R., N. Patel, and A. Miotello. 2009. Efficient Catalytic Properties of Co-Ni-P-B Catalyst Powders for Hydrogen Generation by Hydrolysis of Alkaline Solution of NaBH4. International Journal of Hydrogen Energy 34 (7):2893–900. doi:10.1016/j.ijhydene.2009.02.007.
  • Glavee, G. N., K. J. Klabunde, C. M. Sorensen, and G. C. Hadjipanayis. 1993. Borohydride Reduction of Cobalt Ions in Water. Chemistry Leading to Nanoscale Metal, Boride, or Borate Particles. Langmuir 9 (1):162–69. doi:10.1021/la00025a034.
  • Hua, D., Y. Hanxi, A. Xinping, and C. Chuansin. 2003. Hydrogen Production from Catalytic Hydrolysis of Sodium Borohydride Solution Using Nickel Boride Catalyst. International Journal of Hydrogen Energy 28 (10):1095–100. doi:10.1016/S0360-3199(02)00235-5.
  • Ingersoll, J. C., N. Mani, J. C. Thenmozhiyal, and A. Muthaiah. 2007. Catalytic Hydrolysis of Sodium Borohydride by a Novel Nickel-Cobalt-Boride Catalyst. Journal of Power Sources 173 (1):450–57. doi:10.1016/j.jpowsour.2007.04.040.
  • Izgi, M. S., Ö. Şahin, and C. Saka. 2016. Hydrogen Production from NaBH4 Using Co-Cu-B Catalysts Prepared in Methanol: Effect of Plasma Treatment. International Journal of Hydrogen Energy 41 (3):1600–08. doi:10.1016/j.ijhydene.2015.11.004.
  • Javed, U., and V. Subramanian. 2009. Hydrogen Generation Using a Borohydride-Based Semi-Continuous Milli-Scale Reactor: Effects of Physicochemical Parameters on Hydrogen Yield. Energy and Fuels 23 (1):408–13. doi:10.1021/ef8005417.
  • Kim, D. R., K. W. Cho, Y. Il Choi, and C. J. Park. 2009. Fabrication of Porous Co-Ni-P Catalysts by Electrodeposition and Their Catalytic Characteristics for the Generation of Hydrogen from an Alkaline NaBH4 Solution. International Journal of Hydrogen Energy 34 (6):2622–30. doi:10.1016/j.ijhydene.2008.12.097.
  • Kim, H. J., K. J. Shin, H. J. Kim, M. K. Han, H. Kim, Y. G. Shul, and K. T. Jung. 2010. Hydrogen Generation from Aqueous Acid-Catalyzed Hydrolysis of Sodium Borohydride. International Journal of Hydrogen Energy 35 (22):12239–45. doi:10.1016/j.ijhydene.2010.08.027.
  • Liu, B. H., Z. P. Li, and S. Suda. 2006. Nickel- and Cobalt-Based Catalysts for Hydrogen Generation by Hydrolysis of Borohydride. Journal of Alloys and Compounds 415 (1–2):288–93. doi:10.1016/j.jallcom.2005.08.019.
  • Liu, C. H., B. H. Chen, C. L. Hsueh, J. R. Ku, M. S. Jeng, and F. Tsau. 2009. Hydrogen Generation from Hydrolysis of Sodium Borohydride Using Ni-Ru Nanocomposite as Catalysts. International Journal of Hydrogen Energy 34 (5):2153–63. doi:10.1016/j.ijhydene.2008.12.059.
  • Lu, H., H. Yin, Y. Liu, T. Jiang, and L. Yu. 2008. Influence of Support on Catalytic Activity of Ni Catalysts in P-Nitrophenol Hydrogenation to p-Aminophenol. Catalysis Communications 10:313–16. doi:10.1016/j.catcom.2008.09.015.
  • Lyu, Y., Y. Liu, L. Xu, X. Zhao, Z. Liu, X. Liu, and Z. Yan. 2017. Effect of Ethanol on the Surface Properties and N-Heptane Isomerization Performance of Ni/SAPO-11. Applied Surface Science 401:57–64. doi:10.1016/j.apsusc.2016.12.230.
  • Moon, G. Y., S. S. Lee, G. R. Yang, and K. H. Song. 2010. Effects of Organic Acid Catalysts on the Hydrogen Generation from NaBH 4. Korean Journal Chemical Engg 27 (2):474–79. doi:10.1007/s11814-010-0072-3.
  • Murugesan, S., and V. (Ravi) Subramanian. 2009. Effects of Acid Accelerators on Hydrogen Generation from Solid Sodium Borohydride Using Small Scale Devices. Journal of Power Sources 187 (1):216–23. doi:10.1016/j.jpowsour.2008.10.060.
  • Qiu, L., H. Yin, H. Yin, and A. Wang. 2018. Catalytic Conversion of Glycerol to Lactic Acid Over Hydroxyapatite-Supported Metallic Ni 0 Nanoparticles. Journal of Nanoscience and Nanotechnology 18 (7 (July 1)):4734–45. doi:10.1166/jnn.2018.14864.
  • Şahin, Ö., M. S. Izgi, E. Onat, and C. Saka. 2016. Influence of the Using of Methanol Instead of Water in the Preparation of Co-B-TiO2 Catalyst for Hydrogen Production by NaBH4 Hydrolysis and Plasma Treatment Effect on the Co-B-TiO2 Catalyst. International Journal of Hydrogen Energy 41:4. doi:10.1016/j.ijhydene.2015.11.094.
  • Şahin, Ö., D. Kilinç, and C. Saka. 2015. Hydrogen Production by Catalytic Hydrolysis of Sodium Borohydride with a Bimetallic Solid-State Co-Fe Complex Catalyst. Separation Science and Technology (Philadelphia) 50:13.
  • Schlesinger, H. I., H. C. Brown, A. E. Finholt, J. R. Gilbreath, H. R. Hoekstra, and E. K. Hyde. 1953. New Developments in the Chemistry of Diborane and of the Borohydrides .9. Sodium Borohydride, Its Hydrolysis and Its Use as a Reducing Agent and in the Generation of Hydrogen. Journal of the American Chemical Society. doi:10.1021/ja01097a057.
  • Shen, X., M. Dai, M. Gao, B. Zhao, and W. Ding. 2013. Solvent Effects in the Synthesis of CoB Catalysts on Hydrogen Generation from Hydrolysis of Sodium Borohydride. Chinese Journal of Catalysis 34 (5):979–85. doi:10.1016/S1872-2067(12)60577-4.
  • Walter, J. C., A. Zurawski, D. Montgomery, M. Thornburg, and S. Revankar. 2008. Sodium Borohydride Hydrolysis Kinetics Comparison for Nickel, Cobalt, and Ruthenium Boride Catalysts. Journal of Power Sources 179 (1):335–39. doi:10.1016/j.jpowsour.2007.12.006.
  • Wang, A., H. Yin, H. Lu, J. Xue, M. Ren, and T. Jiang. 2009. Effect of organic modifiers on the structure of Nickel nanoparticles and catalytic activity in the Hydrogenation of P-Nitrophenol to p-Aminophenol. Langmuir 25:12736–41. doi:10.1021/la901815b.
  • Wang, A., H. Yin, M. Ren, H. Lu, J. Xue, and T. Jiang. 2010. Preparation of Nickel Nanoparticles with different sizes and structures and catalytic activity in the hydrogenation of P-Nitrophenol. New Journal of Chemistry 34 (708–713):2010. doi:10.1039/b9nj00657e.
  • Yang, C., W. Xue, H. Yin, Z. Lu, A. Wang, L. Shen, and Y. Jiang. 2017. Hydrogenation of 3-Nitro-4-Methoxy-Acetylaniline with H2to 3-Amino-4-Methoxy-Acetylaniline Catalyzed by Bimetallic Copper/Nickel Nanoparticles. New Journal of Chemistry 41:3358–66. doi:10.1039/C7NJ00066A.
  • Yin, H., H. Yin, A. Wang, and L. Shen. 2018. Catalytic Conversion of Glycerol to Lactic Acid over Graphite-Supported Nickel Nanoparticles and Reaction Kinetics. Journal of Industrial and Engineering Chemistry 57 (2 (January)):226–35. doi:10.1016/j.jiec.2017.08.028.
  • Zangeneh, F. T., S. Mehrazma, and S. Sahebdelfar. 2013. The Influence of Solvent on the Performance of Pt-Sn/θ-Al2O3propane Dehydrogenation Catalyst Prepared by Co-Impregnation Method. Fuel Processing Technology 109:118–23. doi:10.1016/j.fuproc.2012.09.046.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.