196
Views
3
CrossRef citations to date
0
Altmetric
Articles

Pyrolysis characteristics of Turkish lignites in N2 and CO2 environments

, , ORCID Icon &
Pages 2467-2475 | Received 30 Mar 2018, Accepted 06 Jul 2018, Published online: 31 Jul 2018

References

  • Abbasi-Atibeh, E., and A. Yozgatligil. 2014. A study on the effects of catalysts on pyrolysis and combustion characteristics of Turkish lignite in oxy-fuel conditions. Fuel Elsevier Ltd: 115:841–49. doi:10.1016/j.fuel.2013.01.073.
  • Ahmed, M. A., M. J. Blesa, and J. L. Miranda. 2010. Maria coal pyrolysis studied by fourier transform infrared and mössbauer spectroscopy. Energy Sources, Part A: Recovery, Utilization and Environmental Effects 32 (18):1747–55. doi:10.1080/15567030903058469.
  • Brachi, P., F. Miccio, M. Miccio, and G. Ruoppolo. 2016. Pseudo-component thermal decomposition kinetics of tomato peels via isoconversional methods. Fuel Processing Technology Elsevier B.V.:154: 243–50. doi:10.1016/j.fuproc.2016.09.001.
  • British Petroleum. 2015. Primary energy consumption - leading countries 2014. British Petroleum no. June 48. https://doi.org/bp.com/statisticalreview.
  • Burnard, K., and S. Bhattacharya. 2011. Power Generation from Coal: Ongoing Developments and Outlook. Paris, France: International Energy Agency. http://www.iea.org/papers/2011/power_generation_from_coal.pdf.
  • Caballero, J. A., and J. A. Conesa. 2005. Mathematical considerations for nonisothermal kinetics in thermal decomposition. Journal of Analytical and Applied Pyrolysis 73 (1):85–100. doi:10.1016/j.jaap.2004.12.003.
  • Cai, J., D. Xu, Z. Dong, X. Yu, Y. Yang, S. W. Banks, and A. V. Bridgwater. 2018. Processing thermogravimetric analysis data for isoconversional kinetic analysis of lignocellulosic biomass pyrolysis: Case study of corn stalk. Renewable and Sustainable Energy Reviews 82 (April 2017):2705–15. doi:10.1016/j.rser.2017.09.113.
  • Du, R., W. Keng, L. Zhang, Y. She, X. Daan, C. Chao, X. Qin, and B. Zhang. 2016. Thermal behavior and kinetic study on the pyrolysis of shenfu coal by sectioning method. Journal of Thermal Analysis and Calorimetry Springer Netherlands: 125 (2):959–66. doi:10.1007/s10973-016-5475-x.
  • E1641. 2013. Standard test method for decomposition kinetics by thermogravimetry using the ozawa/flynn/wall method 1. ASTM Standard Test Method for Decomposition Kinetics by Thermogravimetry Using the Ozawa/Flynn/Wall Method 1:1–7. doi: 10.1520/E1641-13.2.
  • Earnest, C. 1988. The modern thermogravimetric approach to the compositional analysis of materials. Compositional Analysis by Thermogravimetry, Ed. pp. 1-18. Philadelphia: ASTM.
  • Güneş, M., and S. K. Güneş. 2008. Distributed activation energy model parameters of some Turkish coals. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 30 (16):1460–72. doi:10.1080/15567030701258501.
  • Heydari, M., M. Rahman, and R. Gupta. 2015. Kinetic study and thermal decomposition behavior of lignite coal. International Journal of Chemical Engineering 2015. doi:10.1155/2015/481739.
  • Hyatt, E. P., I. B. Cutler, and M. E. Wadsworth. 1955. Calcium carbonate decomposition in carbon dioxide atmosphere. Journal of the American Ceramic Society 61 (1943):70–74.
  • Idris, S. S., N. A. Rahman, K. Ismail, A. B. Alias, Z. A. Rashid, and M. J. Aris. 2010. Investigation on thermochemical behaviour of low rank malaysian coal, oil palm biomass and their blends during pyrolysis via Thermogravimetric Analysis (TGA). Bioresource Technology Elsevier Ltd: 101 (12):4584–92. doi:10.1016/j.biortech.2010.01.059.
  • Jain, A. A., A. Mehra, and V. V. Ranade. 2016. Processing of TGA data: Analysis of isoconversional and model fitting methods. Fuel Elsevier Ltd: 165:490–98. doi:10.1016/j.fuel.2015.10.042.
  • Kok, M. V. 2003. Coal pyrolysis: Thermogravimetric study and kinetic analysis. Energy Sources 25 (10):1007–14. doi:10.1080/00908310303397.
  • Kök, M. V. 2008. Recent developments in the application of thermal analysis techniques in fossil fuels. Journal of Thermal Analysis and Calorimetry 91 (3):763–73. doi:10.1007/s10973-006-8282-y.
  • Meng, F., Y. Jianglong, A. Tahmasebi, and Y. Han. 2013. Pyrolysis and combustion behavior of coal gangue in O2/CO 2 and O2/N2 mixtures using thermogravimetric analysis and a drop tube furnace. Energy and Fuels 27 (6):2923–32. doi:10.1021/ef400411w.
  • Opfermann, J. R., E. Kaisersberger, and H. J. Flammersheim. 2002. Model-free analysis of thermoanalytical data-advantages and limitations. Thermochimica Acta 391 (1–2):119–27. doi:10.1016/S0040-6031(02)00169-7.
  • Seo, D. K., S. S. Park, Y. T. Kim, J. Hwang, and T. U. Yu. 2011. Study of coal pyrolysis by Thermo-Gravimetric Analysis (TGA) and concentration measurements of the evolved species. Journal of Analytical and Applied Pyrolysis Elsevier B.V.: 92 (1):209–16. doi:10.1016/j.jaap.2011.05.012.
  • Sestak, J. 1984. Thermophysical Properties of Solids. Their Measurement and Theoretical Thermal Analysis (Comprehensive Analytical Chemistry). Thermal Analysis Part D, Volume XII D.
  • Shi, Y., L. Shuyuan, and H. Haoquan. 2012. Studies on pyrolysis characteristic of lignite and properties of its pyrolysates. Journal of Analytical and Applied Pyrolysis Elsevier B.V.: 95:75–78. doi:10.1016/j.jaap.2012.01.008.
  • Soria-Verdugo, A., E. Goos, and G.-H. Nestor. 2015. Effect of the number of TGA curves employed on the biomass pyrolysis kinetics results obtained using the distributed activation energy model. Fuel Processing Technology Elsevier B.V.: 134:360–71. doi:10.1016/j.fuproc.2015.02.018.
  • Starink, M. J. 2003. The determination of activation energy from linear heating rate experiments: A comparison of the accuracy of isoconversion methods. Thermochimica Acta 404 (1–2):163–76. doi:10.1016/S0040-6031(03)00144-8.
  • Toftegaard, M. B., P. A. Jacob Brix, P. G. Jensen, and A. D. Jensen. 2010. Oxy-fuel combustion of solid fuels. Progress in Energy and Combustion Science Elsevier Ltd: 36 (5):581–625. doi:10.1016/j.pecs.2010.02.001.
  • Vyazovkin, S., and N. Sbirrazzuoli. 2006. Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromolecular Rapid Communications 27 (18):1515–32. doi:10.1002/marc.200600404.
  • Vyazovkin, S., A. K. Burnham, J. M. Criado, L. A. Pérez-Maqueda, C. Popescu, and N. Sbirrazzuoli. 2011. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochimica Acta Elsevier B.V.: 520 (1–2):1–19. doi:10.1016/j.tca.2011.03.034.
  • Wagner, N. J., and B. Hlatshwayo. 2005. The occurrence of potentially hazardous trace elements in five highveld coals, South Africa. International Journal of Coal Geology 63 (3–4):228–46. doi:10.1016/j.coal.2005.02.014.
  • Xu, L., M. Tang, L. Duan, B. Liu, X. Ma, Y. Zhang, M. D. Argyle, and M. Fan. 2014. Pyrolysis characteristics and kinetics of residue from China Shenhua industrial direct coal liquefaction plant. Thermochimica Acta Elsevier B.V.: 589:1–10. doi:10.1016/j.tca.2014.05.005.
  • Xu, R., J. Zhang, G. Wang, H. Zuo, Z. Liu, K. Jiao, Y. Liu, and L. Kejiang. 2016. Devolatilization characteristics and kinetic analysis of lump coal from China COREX3000 under high temperature. Metallurgical and Materials Transactions B Springer US: 47 (4):2535–48. doi:10.1007/s11663-016-0708-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.