126
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Influence of fuel ashes on corrosion of surface coatings cladded by CMT method

, , , &
Pages 427-437 | Received 22 Feb 2018, Accepted 22 Aug 2018, Published online: 19 Sep 2018

References

  • Alipour, Y., and P. Henderson. 2015. Corrosion of furnace wall materials in wasre-wood fired power plant. The International Journal of Corrosion Processes and Corrosion Control 50:355–63.
  • Antunes, R. A., and M. C. L. de Oliveira. 2013. Corrosion in biomass combustion: A materials selection analysis and its interaction with corrosion mechanisms and mitigation strategies. Corrosion Science 6:6–26. doi:10.1016/j.corsci.2013.07.013.
  • Arivazhagan, N., S. Singh, S. Prakash, and M. G. Reddy. 2009. Hot corrosion studies on dissimilar friction welded low alloy steel and austenitic stainless steel under chlorine containing salt deposits under cyclic conditions. Corrosion Engineering, Science and Technology 44 (5):369–80. doi:10.1179/147842208X338974.
  • Cha, S. C. 2013. High temperature corrosion of superheater materials below deposited biomass ashes in biomass combusting atmospheres. The International Journal of Corrosion Processes and Corrosion Control 42:50–60.
  • David, S. A., J. A. Siefert, J. N. DuPont, and J. P. Shingledecker. 2015. Weldability and weld performance of candidate nickel base superalloys for advanced ultrasupercritical fossil power plants part I: Fundamentals. Science & Technology of Welding & Joining 20:532–52. doi:10.1179/1362171815Y.0000000035.
  • David, S. A., J. A. Siefert, and Z. Feng. 2013. Welding and weldability of candidate ferritic alloys for future advanced ultrasupercritical fossil power plants. Science & Technology of Welding & Joining 18:631–51. doi:10.1179/1362171813Y.0000000152.
  • Dębowska, A., A. Kopia, I. Kalemba-Rec, P. Petrzak, and A. Magdziarz. 2017. Surface characterization of 309 and 310 steel after the corrosion in wood biomass ash. Acta Physica Polonica A 131:1387–89. doi:10.12693/APhysPolA.131.1387.
  • Demirbas, A. 2004. Combustion characteristics of different biomass fuels. Progress in Energy and Combustion Science 30:219–30. doi:10.1016/j.pecs.2003.10.004.
  • FCCC/CP/2015/L.9, Framwork convention on climate change, Conference of the Paris, 30 November to 11 December 2015.
  • Fernandez, R. G., C. P. Garcia, A. G. Lavin, and J. L. B. de Las Heras. 2012. Study of main combustion characteristics for biomass fuels used in boilers. Fuel Processing Technology 103:16–26. doi:10.1016/j.fuproc.2011.12.032.
  • Fytili, D., and A. Zabaniotou. 2008. Utilization of sewage sludge in EU application of old and new methods—A review. Renewable & Sustainable Energy Reviews 12:116–40. doi:10.1016/j.rser.2006.05.014.
  • Haberl, H., T. Beringer, S. C. Bhattacharya, K. H. Erb, and M. Hoogwijk. 2010. The global technical potencial of bio-energy in 2050 considering sustainability constraints. Current Opinion in Environmental Sustainability 2:394–403. doi:10.1016/j.cosust.2010.10.007.
  • Kawahara, Y. 2002. High temperature corrosion mechanisms and effect of alloying elements for materials used in waste incineration environment. Corrosion Science 44:223–45. doi:10.1016/S0010-938X(01)00058-0.
  • Khan, A. A., W. de Jong, P. J. Jansens, and H. Spliethoff. 2009. Biomass combustion in fluidized bed boilers: Potential problems and remedies. Fuel Processing Technology 90:21–50. doi:10.1016/j.fuproc.2008.07.012.
  • Kofstad, P. 1988. High temperature corrosion. London: Elsevier Applied Science.
  • Magdziarz, A., A. K. Dalai, and J. A. Koziński. 2016a. Corrosive properties of ash residues generated during renewable fuels combustion. Fuel 176:135–45. doi:10.1016/j.fuel.2016.02.069.
  • Magdziarz, A., M. Gajek, D. Nowak-Woźny, and M. Wilk. 2018. Mineral phase transformation of biomass ashes - Experimental and thermochemical calculations. Renewable Energy. doi:10.1016/j.renene.2017.05.057.
  • Magdziarz, A., M. Wilk, M. Gajek, D. Nowak-Woźny, A. Kopia, I. Kalemba-Rec, and J. A. Koziński. 2016b. Properties of ash geneated during sewage sludge combustion: A multifaceted analysis. Energy 113:85–94. doi:10.1016/j.energy.2016.07.029.
  • Masuyama, F. 2004. Alloy development and material issues with increasing steam temperatures. Proceedings of the Fouth International Conference on Advances in Material Technology for Fossil Power Plants, Hilton Head Island, USA, October
  • Obernberger, I., T. Brunner, and G. Barnthaler. 2006. Chemical properties of solid biofuels – Significance and impact. Biomass & Bioenergy 30:973–82. doi:10.1016/j.biombioe.2006.06.011.
  • Okoro, S. C., M. Montgomery, F. J. Frandsen, and K. Pantleon. 2015. High temperature corrosion during biomass firing: Improved understanding by depth resolved characterisation of corrosion products. Materials at High Temperatures 32:92–101. doi:10.1179/0960340914Z.00000000081.
  • Phongphiphat, A., C. Ryu, Y. B. Yang, K. N. Finney, A. Leyland, and V. N. Sharifi. 2010. Investigation into high-temperature corrosion in a large-scale municipal waste-to-energy plant. Corrosion Science 52:3861–74. doi:10.1016/j.corsci.2010.07.032.
  • Proff, C., T. Jonsson, C. Pettersson, J. E. Svensson, L. G. Johansson, and M. Halvarsson. 2009. Microstructural investigation of the KCl-induced corrosion of the austenitic alloy Sanicro 28 (35Fe27Cr31Ni) at 600°C. Materials at High Temperatures 26 (2):113–25. doi:10.3184/096034009X464339.
  • Sahu, S. G., N. Chakraborty, and P. Sarkar. 2014. Coal-biomass co-combustion: An overview. Renewable & Sustainable Energy Reviews 39:575–86. doi:10.1016/j.rser.2014.07.106.
  • Saidur, R., E. A. Abdelaziz, A. Demirabas, M. S. Hossain, and S. Mekhilef. 2011. A review on biomass as fuel for boilers. Renewable & Sustainable Energy Reviews 15:2262–89. doi:10.1016/j.rser.2011.02.015.
  • Schütz, A., M. Günthner, G. Motz, O. Greiβl, and U. Glatzel. 2015. High temperature (salt melt) corrosion tests with ceramic-coated steel. Materials Chemistry and Physics 159:10–18. doi:10.1016/j.matchemphys.2015.03.023.
  • Shao, Y., J. Wang, F. Preto, J. Zhu, and C. Xu. 2012. Ash deposition in biomass combustion or co-firing for power heat generation. Energies 5:5171–89. doi:10.3390/en5125171.
  • Siefert, J. A., and S. A. David. 2014. Weldability and weld performance of candidate austenic alloys for advanced ultrasupercritical fossil power plants. Science & Technology of Welding & Joining 19:271–94. doi:10.1179/1362171814Y.0000000197.
  • Solecka, M., M. Kopyściański, J. Kusiński, A. Kopia, and A. Radziszewska. 2016. Erosive wear of Inconel 625 alloy coatings deposited by CMT method. Archives of Metallurgy and Materials 61:1205–06. doi:10.1515/amm-2016-0199.
  • Stelmach, S., and R. Wasilewski. 2008. Co-combustion of dried sewage sludge and coal in pulverized coal boiler. Journal of Material Cycles and Waste Management 10:110–15. doi:10.1007/s10163-007-0206-9.
  • Vassilev, S. V., D. Baxter, L. K. Andersen, and C. G. Vassileva. 2010. An overview of the chemical composition of biomass. Fuel 89:913–33. doi:10.1016/j.fuel.2009.10.022.
  • Vassilev, S. V., D. Baxter, L. K. Andersen, C. G. Vassileva, and T. J. Morgan. 2012. An overview of the organic and inorganic phase composition of biomass. Fuel 94:1–33. doi:10.1016/j.fuel.2011.09.030.
  • Viklund, P., A. Hjörnhede, P. Henderson, P. Stålenheim, and R. Petterson. 2013. Corrosion of superheater materials in a waste-to-energy plant. Fuel Processing Technology 105:106–12. doi:10.1016/j.fuproc.2011.06.017.
  • Weidong, L., L. Ming, L. Weifeng, and L. Haifeng. 2010. Study on the ash fusion temperatures of coal and sewage sludge mixtures. Fuel 89:1566–72. doi:10.1016/j.fuel.2009.08.039.
  • Wzorek, M. 2012. Characterisation of the properties of alternative fuels containing sewage sludge. Fuel Processing Technology 104:80–89. doi:10.1016/j.fuproc.2012.04.023.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.