324
Views
4
CrossRef citations to date
0
Altmetric
Research Article

The process intensification of CO2 absorption in Hilbert fractal reactor fabricated by a 3D printer

, , , , &
Pages 481-492 | Received 18 Apr 2018, Accepted 19 Aug 2018, Published online: 20 Sep 2018

References

  • Abu-Zahra, M. R. M., L. H. J. Schneiders, J. P. M. Niederer, P. H. M. Feron, and G. F. Versteeg. 2007. CO2 capture from power plants. Part I. A parametric study of the technical-performance based on monoethanolamine. International Journal of Greenhouse Gas Control 1:37–46. doi:10.1016/S1750-5836(06)00007-7.
  • Akanksha, K., K. Pant, and V. K. Srivastava. 2007. Carbon dioxide absorption into monoethanolamine in a continuous film contactor. Chemical Engineering Journal 133:229–37. doi:10.1016/j.cej.2007.02.001.
  • Akanksha, K., K. Pant, and V. K. Srivastava. 2008. Mass transport correlation for CO2 absorption in aqueous monoethanolamine in a continuous film contactor. Chemical Engineering and Processing 47:920–28. doi:10.1016/j.cep.2007.02.008.
  • Alvarez, E., D. Gomez-Diaz, J. M. Navaza, and B. Sanjurjo. 2008. Continuous removal of carbon dioxide by absorption employing a bubble column. Chemical Engineering Journal 137:251–56. doi:10.1016/j.cej.2007.04.027.
  • Aranowski, R., P. Wojewodka, A. Zielinska-Jurek, R. Bokotko, and C. Jungnickel. 2017. Spinning fluids reactor: A new design of a gas - liquid contactor. Chemical Engineering and Processing 116:40–47. doi:10.1016/j.cep.2017.03.005.
  • Aroonwilas, A., A. Chakma, P. Tontiwachwuthikul, and A. Veawab. 2003. Mathematical modelling of mass-transfer and hydrodynamics in CO2 absorbers packed with structured packings. Chemical Engineering Science 58:4037–53. doi:10.1016/S0009-2509(03)00315-4.
  • Aroonwilas, A., and A. Veawab. 2004. Characterization and comparison of the CO2 absorption performance into single and blended alkanolamines in a packed column. Industrial & Engineering Chemistry Research 43:2228–37. doi:10.1021/ie0306067.
  • Bao, Y., J. Yang, L. Chen, and Z. Gao. 2012. Influence of the top impeller diameter on the gas dispersion in a sparged multi-impeller stirred tank. Industrial & Engineering Chemistry Research 51:12411–20. doi:10.1021/ie301150b.
  • Blauwhoff, P. M. M., G. F. Versteeg, and W. P. M. Vanswaaij. 1983. A study on the reaction between CO2 and alkanolamines in aqueous-solutions. Chemical Engineering Science 38:1411–29. doi:10.1016/0009-2509(83)80077-3.
  • Chung, P. M. Y., and M. Kawaji. 2004. The effect of channel diameter on adiabatic two-phase flow characteristics in microchannels. International Journal of Multiphase Flow 30:735–61. doi:10.1016/j.ijmultiphaseflow.2004.05.002.
  • Constantinou, A., and A. Gavriilidis. 2010. CO2 absorption in a microstructured mesh reactor. Industrial & Engineering Chemistry Research 49:1041–49. doi:10.1021/ie900697u.
  • Da Silva, E. F., and H. F. Svendsen. 2006. Study of the carbamate stability of amines using a initio methods and free-energy perturbations. Industrial & Engineering Chemistry Research 45:2497–504. doi:10.1021/ie050501z.
  • Desideri, U., and A. Paolucci. 1999. Performance modelling of a carbon dioxide removal system for power plants. Energy Conversion and Management 40:1899–915. doi:10.1016/S0196-8904(99)00074-6.
  • Dickens, G. R. 2004. Global change - Hydrocarbon-driven warming. Nature 429:513–15. doi:10.1038/429513a.
  • Doku, G. N., W. Verboom, D. N. Reinhoudt, and A. van den Berg. 2005. On-microchip multiphase chemistry - A review of microreactor design principles and reagent contacting modes. Tetrahedron 61:2733–42. doi:10.1016/j.tet.2005.01.028.
  • Faramarzi, L., G. M. Kontogeorgis, M. L. Michelsen, K. Thomsen, and E. H. Stenby. 2010. Absorber model for CO2 capture by monoethanolamine. Industrial & Engineering Chemistry Research 49:3751–59. doi:10.1021/ie901671f.
  • Ganapathy, H., A. Shooshtari, S. Dessiatoun, M. M. Ohadi, and M. Alshehhi. 2015. Hydrodynamics and mass transfer performance of a microreactor for enhanced gas separation processes. Chemical Engineering Journal 266:258–70. doi:10.1016/j.cej.2014.12.028.
  • Ganapathy, H., S. Steinmayer, A. Shooshtari, S. Dessiatoun, M. M. Ohadi, and M. Alshehhi. 2016. Process intensification characteristics of a microreactor absorber for enhanced CO2 capture. Applied Energy 162:416–27. doi:10.1016/j.apenergy.2015.10.010.
  • Gao, -N.-N., J.-X. Wang, L. Shao, and J.-F. Chen. 2011b. Removal of carbon dioxide by absorption in microporous tube-in-tube microchannel reactor. Industrial & Engineering Chemistry Research 50:6369–74. doi:10.1021/ie1024886.
  • Gao, N. N., J. X. Wang, L. Shao, and J. F. Chen. 2011a. Removal of carbon dioxide by absorption in microporous tube-in-tube microchannel reactor. Industrial & Engineering Chemistry Research 50:6369–74. doi:10.1021/ie1024886.
  • Godini, H. R., and D. Mowla. 2008. Selectivity study of H2S and CO2 absorption from gaseous mixtures by MEA in packed beds. Chemical Engineering Research and Design 86:401–09. doi:10.1016/j.cherd.2007.11.012.
  • Guo, X., Y. Fan, and L. Luo. 2013. Mixing performance assessment of a multi-channel mini heat exchanger reactor with arborescent distributor and collector. Chemical Engineering Journal 227:116–27. doi:10.1016/j.cej.2012.08.068.
  • Guo, X., Y. Fan, and L. Luo. 2014. Multi-channel heat exchanger-reactor using arborescent distributors: A characterization study of fluid distribution, heat exchange performance and exothermic reaction. Energy 69:728–41. doi:10.1016/j.energy.2014.03.069.
  • Gusain, R., P. Kumar, O. P. Sharma, S. L. Jain, and O. P. Khatri. 2016. Reduced graphene oxide-CuO nanocomposites for photocatalytic conversion of CO2 into methanol under visible light irradiation. Applied Catalysis B: Environmental 181:352–62. doi:10.1016/j.apcatb.2015.08.012.
  • Huang, Y.-X., J.-Y. Jang, and C.-H. Cheng. 2014. Fractal channel design in a micro methanol steam reformer. International Journal of Hydrogen Energy 39:1998–2007. doi:10.1016/j.ijhydene.2013.11.088.
  • Jassim, M. S., G. Rochelle, D. Eimer, and C. Ramshaw. 2007. Carbon dioxide absorption and desorption in aqueous monoethanolamine solutions in a rotating packed bed. Industrial & Engineering Chemistry Research 46:2823–33. doi:10.1021/ie051104r.
  • Kerr, R. A. 2006. Global change. No doubt about it, the world is warming. Science 312:825. doi:10.1126/science.312.5775.825.
  • Kuan, Y.-D., J.-Y. Chang, S.-M. Lee, and S.-R. Lee. 2009. Characterization of a direct methanol fuel cell using Hilbert curve fractal current collectors. Journal of Power Sources 187:112–22. doi:10.1016/j.jpowsour.2008.10.094.
  • Lin, C. C., W. T. Liu, and C. S. Tan. 2003. Removal of carbon dioxide by absorption in a rotating packed bed. Industrial & Engineering Chemistry Research 42:2381–86.
  • Lin, C.-C., Y.-H. Lin, and C.-S. Tan. 2010. Evaluation of alkanolamine solutions for carbon dioxide removal in cross-flow rotating packed beds. Journal of Hazardous Materials 175:344–51. doi:10.1016/j.jhazmat.2009.10.009.
  • Mao, J., T. Peng, X. Zhang, K. Li, and L. Zan. 2012. Selective methanol production from photocatalytic reduction of CO2 on BiVO4 under visible light irradiation. Catalysis Communications 28:38–41. doi:10.1016/j.catcom.2012.08.008.
  • Mimura, T., K. Matsumoto, M. Iijima, and S. Mitsuoka. 2001. Development and application of fluegas carbon dioxide recovery technology. Proceedings of the Fifth Greenhouse Gas Control Technologies, Cairns, Australia.
  • Mimura, T., H. Simayoshi, T. Suda, M. Iijima, and S. Mituoka. 1997. Development of energy saving technology for flue gas carbon dioxide recovery in power plant by chemical absorption method and steam system. Energy Conversion and Management 38:S57–S62. doi:10.1016/S0196-8904(96)00246-4.
  • Nienow, A. W., and W. Bujalski. 2002. Recent studies on agitated three-phase (gas-solid-liquid) systems in the turbulent regime. Chemical Engineering Research & Design 80:832–38. doi:10.1205/026387602321143363.
  • Niu, H., L. Pan, H. Su, and S. Wang. 2009. Effects of design and operating parameters on CO2 absorption in microchannel contactors. Industrial & Engineering Chemistry Research 48:8629–34. doi:10.1021/ie8018966.
  • Paul, S., A. K. Ghoshal, and B. Mandal. 2008. Theoretical studies on separation of CO2 by single and blended aqueous alkanolamine solvents in flat sheet membrane contactor (FSMC). Chemical Engineering Journal 144:352–60. doi:10.1016/j.cej.2008.01.036.
  • Rao, A. B., and E. S. Rubin. 2002. A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control. Environmental Science & Technology 36:4467–75. doi:10.1021/es0158861.
  • Singh, P., J. P. M. Niederer, and G. F. Versteeg. 2007. Structure and activity relationships for amine based CO2 absorbents - I. International Journal of Greenhouse Gas Control 1:5–10. doi:10.1016/S1750-5836(07)00015-1.
  • Suwankamnerd, P., and S. Wongwises. 2015. An experimental study of two-phase air-water flow and heat transfer characteristics of segmented flow in a microchannel. Experimental Thermal and Fluid Science 62:29–39. doi:10.1016/j.expthermflusci.2014.11.010.
  • Teramoto, M., S. Kitada, N. Ohnishi, H. Matsuyama, and N. Matsumiya. 2004. Separation and concentration of CO2 by capillary-type facilitated transport membrane module with permeation of carrier solution. Journal of Membrane Science 234:83–94. doi:10.1016/j.memsci.2003.12.023.
  • Veawab, A., A. Aroonwilas, and P. Tontiwachwuthikul. 2002. CO2 absorption performance of aqueous alkanolamines in packed columns. Abstracts of Papers of the American Chemical Society 223:U568–69.
  • Wang, L., W. Wu, and X. Li. 2013. Numerical and experimental investigation of mixing characteristics in the constructal tree-shaped microchannel. International Journal of Heat and Mass Transfer 67:1014–23. doi:10.1016/j.ijheatmasstransfer.2013.08.077.
  • Yagi, T., H. Shibuya, and T. Sasaki. 1992. Application of chemical absorption process to CO2 recovery from flue-gas generated in power-plants. Energy Conversion and Management 33:349–55. doi:10.1016/0196-8904(92)90030-Z.
  • Yuan, M., F. Tian, G. G. Li, H. Zhao, Y. Liu, and R. Chen. 2017. Fe (III)-modified BiOBr hierarchitectures for improved photocatalytic benzyl alcohol oxidation and organic pollutants degradation. Industrial & Engineering Chemistry Research 56:5935–43. doi:10.1021/acs.iecr.7b00905.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.