570
Views
4
CrossRef citations to date
0
Altmetric
Articles

The effect of barium-promoted for microsphere Ru/CeO2 catalysts in ammonia synthesis

, , , ORCID Icon & ORCID Icon
Pages 689-699 | Received 23 Jun 2018, Accepted 02 Sep 2018, Published online: 19 Sep 2018

References

  • Aika, K. I. 2017. Role of alkali promoter in ammonia synthesis over ruthenium catalysts—Effect on reaction mechanism. Catalysis Today 286:14–20. doi:10.1016/j.cattod.2016.08.012.
  • Dupin, J. C., D. Gonbeau, P. Vinatier, and A. Levasseur. 2000. Systematic XPS studies of metal oxides, hydroxides and peroxides. Physical Chemistry Chemical Physics 2:1319–24. doi:10.1039/A908800H.
  • Erisman, J. W., M. A. Sutton, J. Galloway, Z. Klimont, and W. Winiwarter. 2008. How a century of ammonia synthesis changed the world. Nature Geosci 1:636–39. doi:10.1038/ngeo.325.
  • Guo, T. Y., J. P. Du, and J. P. Li. 2016. The effects of ceria morphology on the properties of Pd/ceria catalyst for catalytic oxidation of low-concentration methane. Journal of Materials Science 51:10917–25. doi:10.1007/s10853-016-0303-z.
  • Izumi, Y., Y. Iwata, and K. I. Aika. 1996. Catalysis on ruthenium clusters supported on CeO2 or Ni-doped CeO2: Adsorption behavior of H2 and ammonia synthesis. The Journal of Physical Chemistry 100:9421–28. doi:10.1021/jp952602o.
  • Kitano, M., S. Kanbara, Y. Inoue, N. Kuganathan, P. V. Sushko, T. Yokoyama, M. Hara, and H. Hosono. 2015. Electride support boosts nitrogen dissociation over ruthenium catalyst and shifts the bottleneck in ammonia synthesis. Nature Communications 6:6731. doi:10.1038/ncomms7731.
  • Li, H., Z. E. Zhang, and Z. J. Liu. 2017. Application of artificial neural networks for catalysis: A review. Catalysts 7:306. doi:10.3390/catal7100306.
  • Lin, B. Y., Y. Liu, L. Heng, J. Ni, J. X. Lin, and L. L. Jiang. 2017. Effect of ceria morphology on the catalytic activity of Co/CeO2 catalyst for ammonia synthesis. Catalysis Communications 101:15–19. doi:10.1016/j.catcom.2017.07.015.
  • Luo, X. J., R. Wang, J. Ni, J. X. Lin, B. Y. Lin, X. M. Xu, and K. M. Wei. 2009. Effect of La2O3 on Ru/CeO2-La2O3 catalyst for ammonia synthesis. Catalysis Letters 133:382–87. doi:10.1007/s10562-009-0177-7.
  • Ma, Z. W., S. L. Zhao, X. P. Pei, X. M. Xiong, and B. Hu. 2017. New insights into the support morphology-dependent ammonia synthesis activity of Ru/CeO2 catalysts. Catalysis Science & Technology 7:191–99. doi:10.1039/C6CY02089E.
  • Mehta, P., P. Barboun, F. A. Herrera, J. Kim, P. Rumbach, D. B. Go, J. C. Hicks, and W. F. Schneider. 2018. Overcoming ammonia synthesis scaling relations with plasma-enabled catalysis. Nature Catalysis 1:269. doi:10.1038/s41929-018-0045-1.
  • Ogura, Y., K. Sato, S. I. Miyahara, Y. Kawano, T. Toriyama, T. Yamamoto, S. Matsumura, S. Hosokawa, and K. Nagaoka. 2018. Efficient ammonia synthesis over a Ru/La0.5Ce0.5O1.75 catalyst pre-reduced at high temperature. Chemical Science 9:2230–37. doi:10.1039/C7SCO5343F.
  • Qi, W. J., J. Y. Ran, Z. E. Zhang, J. T. Niu, P. Zhang, L. J. Fu, B. Hu, and Q. L. Li. 2018. Methane combustion reactivity during the metal→ metallic oxide transformation of Pd-Pt catalysts: Effect of oxygen pressure. Applied Surface Science 435:776–85. doi:10.1016/j.apsusc.2017.11.178.
  • Saito, M., M. Itoh, J. Iwamoto, C. Y. Li, and K. I. Machida. 2006. Synergistic effect of MgO and CeO2 as a support for ruthenium catalysts in ammonia synthesis. Catalysis Letters 106:107–10. doi:10.1007/s10562-005-9615-3.
  • Sato, K., K. Imamura, Y. Kawano, S. I. Miyahara, T. Yamamoto, S. Matsumura, and K. Nagaoka. 2017. A low-crystalline ruthenium nano-layer supported on praseodymium oxide as an active catalyst for ammonia synthesis. Chemical Science 8:674–79. doi:10.1039/C7SC05343F.
  • Schlogl, R. 2003. Catalytic synthesis of ammonia-a “never-ending story”? Angewandte Chemie International Ed. In English 42:2004–08. doi:10.1002/anie.200301553.
  • Song, Z., T. H. Cai, J. C. Hanson, J. A. Rodriguez, and J. Hrbek. 2004. Structure and reactivity of Ru nanoparticles supported on modified graphite surfaces: A study of the model catalysts for ammonia synthesis. Journal of the American Chemical Society 126:8576–84. doi:10.1021/ja031718s.
  • Wang, F., C. M. Li, X. Y. Zhang, M. Wei, D. G. Evans, and X. Duan. 2015. Catalytic behavior of supported Ru nanoparticles on the {100},{110}, and {111} facet of CeO2. Journal of Catalysis 329:177–86. doi:10.1016/j.jcat.2015.05.014.
  • Wang, P. K., F. Chang, W. B. Gao, J. P. Guo, G. T. Wu, T. He, and P. Chen. 2017. Breaking scaling relations to achieve low-temperature ammonia synthesis through LiH-mediated nitrogen transfer and hydrogenation. Nature Chemistry 9:64–70. doi:10.1038/ncshem.2595.
  • Yang, X. L., W. Q. Zhang, C. G. Xia, X. M. Xiong, X. Y. Mu, and B. Hu. 2010. Low temperature ruthenium catalyst for ammonia synthesis supported on BaCeO3 nanocrystals. Catalysis Communications 11:867–70. doi:10.1016/j.catcom.2010.03.008.
  • Zhang, L. M., J. X. Lin, J. Ni, R. Wang, and K. M. Wei. 2011. Highly efficient Ru/Sm2O3-CeO2 catalyst for ammonia synthesis. Catalysis Communications 15:23–26. doi:10.1016/j.catcom.2011.08.003.
  • Zybert, M., A. Tarka, B. Mierzwa, L. Kępiński, and W. R. Pilecka. 2016. Promotion effect of lanthanum on the Co/La/Ba ammonia synthesis catalysts—The influence of lanthanum content. Applied Catalysis A: General 515:16–24. doi:10.1016/j.apcata.2016.01.036.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.