541
Views
18
CrossRef citations to date
0
Altmetric
Articles

Copper recovery improvement in an industrial flotation circuit: A case study of Sarcheshmeh copper mine

, &
Pages 761-778 | Received 07 Jul 2018, Accepted 22 Aug 2018, Published online: 21 Sep 2018

References

  • Agheli, S., A. Hassanzadeh, B. Vaziri Hassas, and M. Hasanzadeh. 2018. Effect of pyrite content of feed and configuration of locked particles on rougher flotation of copper in low and high pyritic ore types. International Journal of Mining Science and Technology 28:167–76. doi:10.1016/j.ijmst.2017.12.002.
  • Aplan, F. F., and D. W. Fuerstenau. 1984. The Flotation of Crysocolla by Mercaptan. International Journal of Mineral Processing 13:105–15. doi:10.1016/0301-7516(84)90014-0.
  • Ata, S., and G. Jameson. 2013. Recovery of coarse particles in the froth phase–A case study. Mineral Engineering 45:121–27. doi:10.1016/j.mineng.2013.02.006.
  • Azizi, A., A. Hassanzadeh, and B. Fadaei. 2015. Investigating of the first-order flotation kinetics models for Sarcheshmeh copper sulphide ore. International Journal of Mining Science and Technology 25:849–54. doi:10.1016/j.ijmst.2015.07.022.
  • Banisi, S., A. Kargar, M. Pourkani, M. Sarvi, and D. Hamidi. 2001. “Recent changes at the Sarcheshmeh copper mine flotation circuits”. Proceedings of 33rd Annual Meeting of the Canadian Mineral Processors, 471–88.
  • Barbaro, M. R., H.-U. C. Cozza, and D. Fuerstanau. 1997. Flotation of oxidised minerals of copper using a new synthetic reagent as collector. International Journal of Mineral Processing 50:275–87. doi:10.1016/S0301-7516(97)00045-8.
  • Castro, S., J. Goldfarb, and J. Laskowski. 1974. Sulphidizing reactions in the flotation of oxidised copper minerals, I. Chemical factors in the sulphidization of copper oxide. International Journal of Mineral Processing 1:141–49. doi:10.1016/0301-7516(74)90010-6.
  • Celik, I. B., N. M. Can, and J. Sherazadishvili. 2011. Influence of process mineralogy on improving metallurgical performance of a flotation plant. Mineral Processing & Extractive Metallurgy Review 32:30–46. doi:10.1080/08827508.2010.509678.
  • Chavez, J. R. 2000. Supergene oxidation of copper deposits: Zoning and distribution of copper oxide minerals. Society of Economic Geologists Newsletter 41 (1):10–21.
  • Chen, S., X. Li, W. C. Xia, and C. Liang. 2017. Optimization of grinding pretreatment for effective flotation of oxidized coal. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 39 (8):794–99. doi:10.1080/15567036.2016.1263258.
  • Chen, Z., G. Gu and R. Zhu. 2017. “Structural modification of cellulose to enhance the flotation efficiency of fine copper oxide ore.” Physicochemical Problems of Mineral Processing, doi:10.5277/ppmp1864
  • Clark, D. W., A. J. H. Newell, G. F. Chilman, and P. G. Capps. 2000. Improving flotation recovery of copper sulphides by nitrogen gas and sulphidisation conditioning. Mineral Engineering 13 (12):1197–206. doi:10.1016/S0892-6875(00)00104-7.
  • Corin, K. C., M. Kalichini, C. T. Connor, and O. S. Simukanga. 2017. The recovery of oxide copper minerals from a complex copper ore by Sulphidisation. Minerals Engineering 102:15–17. doi:10.1016/j.mineng.2016.11.011.
  • Deng, T., and J. Chen. 1991. Treatment of oxidised copper ores with emphasis on refractory ores. Mineral Processing Extractive Metallurgy Review 7:175–207. doi:10.1080/08827509108952671.
  • Gaudin, A. M., J. O. Groh, and H. B. Henderson. 1931. Effect of particle size on flotation, Technical Publication. American Institute of Mining and Metallurgical Engineers 93:3–23.
  • Girgin, E. H., S. Do, C. O. Gomez, and J. A. Finch. 2006. Bubble size as a function of impeller speed in a self-aeration laboratory flotation cell. Mineral Engineering 19:201–03. doi:10.1016/j.mineng.2005.09.002.
  • Hassanzadeh, A. 2017. Measurement and modeling of residence time distribution of overflow ball mill in continuous closed circuit. Geosystem Engineering 20 (5):251–60. doi:10.1080/12269328.2016.1275824.
  • Hassanzadeh, A. 2018. A survey on troubleshooting of closed-circuit grinding system. The Canadian Journal of Metallurgy and Materials Science 57 (3):328–40.
  • Hassanzadeh, A., and A. Azizi. 2015. Flotation circuit efficiency enhancement regarding increase of rougher cells throughput. In 24th International Mining Congress and Exhibition of Turkey, ed. M. G. Kilic, 1175–79. Antalya, Turkey: April.
  • Hassanzadeh, A., and F. Karakas. 2017. Recovery improvement of coarse particles by stage addition of reagents in industrial copper flotation circuit. Journal of Dispersion Science and Technology 38 (2):309–16. doi:10.1080/01932691.2016.1164061.
  • Hassanzadeh, A., M. Firouzi, B. Albijanic, and M. S. Celik. 2018. A review on determination of particle–Bubble encounter using analytical, experimental and numerical methods. Minerals Engineering 122 (15):296–311. doi:10.1016/j.mineng.2018.04.014.
  • Hassanzadeh, A., and M. Hassanzadeh. 2017. Chalcopyrite and pyrite floatabilities in the presence of sodium sulfide and sodium metabisulfite in a high pyritic copper complex ore. Journal of Dispersion Science and Technology 38 (6):782–88. doi:10.1080/01932691.2016.1194763.
  • Jones, M. H., and J. T. Woodcock. 1979. Control of laboratory sulphidization with a sulphide ion- selective electrode before flotation of oxidised lead-zinc-silver dump material. International Journal of Mineral Processing 6:17–30. doi:10.1016/0301-7516(79)90029-2.
  • Kalichini, M. K., C. Corin, C. T. O’Connor, and S. Simukanga. 2017. The role of pulp potential and the sulphidization technique in the recovery of sulphide and oxide copper minerals from a complex ore. Journal of the Southern African Institute of Mining and Metallurgy 117 (8):803–10. doi:10.17159/2411-9717/2017/v117n8a11.
  • Klimpel, R. R. 1997. The Effect of Water Chemistry and Reagent Type on the Performance of Industrial Grinding andFlotation Processes Involving Sulfide Minerals. In 20th International Mineral Processing Congress, GMDB publication, Clausthal-Zellerfeld, eds. H. Hoberg and H. Blottnitz, 279-286. Aachen, Germany.
  • Kohmuench, J., M. Mankosa, E. Yan, H. Wyslouzil, L. Christodoulou, and G. Luttrell. 2010. “Advances in coarse particle recovery–fluidised-bed flotation.” Proceedings of the XXV International Mineral Processing Congress, Brisbane, Australia, 2065–76.
  • Lee, J. S., D. R. Nagaraj, and J. E. Coe. 1998. Practical aspects of oxide copper recovery with alkyl hydroxamates. Minerals Engineering 11 (10):929–39. doi:10.1016/S0892-6875(98)00080-6.
  • Lee, K., D. Archibald, J. McLean, and M. A. Reuter. 2009. Flotation of mixed copper oxide and sulphide minerals with xanthate and hydroxamate collectors. Minerals Engineering 22:395–401. doi:10.1016/j.mineng.2008.11.005.
  • Lutandula, M. S. H., and B. Maloba. 2013. Recovery of cobalt and copper through reprocessing of tailings from flotation of oxidised ores. Journal of Environmental Chemical Engineering 1:1085–90. doi:10.1016/j.jece.2013.08.025.
  • Marabini, A., M. Barbaro, and V. Aless. 1991. New reagents in sulphide mineral flotation. International Journal of Mineral Processing 33:291–306. doi:10.1016/0301-7516(91)90059-R.
  • Miettinen, T., J. Ralston, and D. Fornasiero. 2010. The limits of fine particle flotation. Minerals Engineering 23:420–37. doi:10.1016/j.mineng.2009.12.006.
  • Nagaraj, D. R. 1987. “The chemistry and application of chelating or complexing agents in mineral separations.” Chapter 9. In Reagents in Mineral Technology, eds. Somasundaran, P. and B. M. Moudgil, 257–334. New York: Marcel Dekker.
  • Newell, A. J. H., and D. J. Bradshaw. 2007. The development of a sulfidisation technique to restore the flotation of oxidised pentlandite. Minerals Engineering 20:1039–46. doi:10.1016/j.mineng.2007.04.012.
  • Qaredaqi, M., H. Haji Amin Shirazi, and H. Abdollahi. 2012. Comparison of Yianatos and traditional methods to determine kinetic rate constants of different size fractions in industrial rougher cells. International Journal of Mineral Processing 106:65–69. doi:10.1016/j.minpro.2012.02.006.
  • Quast, K. B., G. Tsatouhas, K. Y. Wong, and R. Newell. 2005. “The use of polysulfide as an alternative sulfidising reagent for the CPS flotation of oxide copper ores.” Proceedings of the Centenary of Flotation Symposium, Brisbane, Australia, 6-9 June 2005. Johnson, G.J. (ed.). Australasian Institute of Mining and Metallurgy, Carlton, Victoria. 1027–32.
  • Reich, M., C. Palacios, G. Vargas, S. Luo, E. M. Cameron, M. I. Leybourne, and C. You. 2009. Supergene enrichment of copper deposits since the onset of modern hyperaridity in the Atacama Desert, Chile. Mineralium Deposita 44:497–504. doi:10.1007/s00126-009-0229-3.
  • Schwarz, A. 1905. Process of concentrating ores. United States of America:: United States Patent Office. US807506.
  • Shahabpour, J., and M. Doorandish. 2008. Mine drainage water from the Sarcheshmeh porphyry copper mine, Kerman, Iran. Environmental Monitoring and Assessment 141:105–20. doi:10.1007/s10661-007-9861-5.
  • Shahbazi, B., B. Rezai, and S. M. J. Koleini. 2010. Bubble–Particle collision and attachment probability on fine particles flotation. Chemical Engineering and Processing 49:622–27. doi:10.1016/j.cep.2010.04.009.
  • Trahar, W. J. 1981. A rational interpretation of the role of particle size in flotation. International Journal of Mineral Processing 8:289–329. doi:10.1016/0301-7516(81)90019-3.
  • Trahar, W. J., and L. J. Warren. 1976. The floatability of very fine particles-A review. International Journal of Mineral Processing 3:103–31. doi:10.1016/0301-7516(76)90029-6.
  • Young, M. F., J. D. Pease, N. W. Johnson, and P. D. Munro. 1997. Developments in milling practice at the lead-zinc concentrator of Mount Isa Mines Limited from 1990. http://www.isamill.com/downloads/Developments%20in%20Milling%20Practice%20at%20the%20LeadZinc%20Concentrator.pdf.
  • Zhou, R., and S. Chander. 1993. Kinetics of sulphidization of malachite in hydrosulphide and tetrasulphide solutions. International Journal of Mineral Processing 37:257–72. doi:10.1016/0301-7516(93)90030-E.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.