389
Views
31
CrossRef citations to date
0
Altmetric
Articles

Prediction of jatropha-algae biodiesel blend oil yield with the application of artificial neural networks technique

, &
Pages 1285-1295 | Received 22 Mar 2018, Accepted 06 Oct 2018, Published online: 18 Nov 2018

References

  • Abbaszaadeh, A., B. Ghobadin, M. R. Omidkhah, and N. Gholamhassan. 2012. Current biodiesel production technologies: A comparative review. Energy Conversion and Management 63:138–48. doi:10.1016/j.enconman.2012.02.027.
  • Asri, M., R. N. Rahman, A. Ebrahimpour, A. B. Salleh, E. R. Gunawan, and M. B. Rahman. 2007. Comparison of estimation capabilities of response surface methodology (RSM) with Artificial neural network (ANN) in lipase-catalyzed synthesis of palm-based wax ester. BMC Biotechnology 7:53. doi:10.1186/1472-6750-7-53.
  • Baharak, S., D. Meysam, A. R. Abdul Aziz, and I. Shaliza. 2016. Analysis and optimization of ultrasound-assisted alkaline palm oil transesterification by RSM and ANN-GA. Chemical Engineering Communications 204:365-381. doi:10.1080/00986445.2015.1135427.
  • Betiku, E., and S. O. Ajala. 2014. Modelling and optimization of Thevetia peruviana (yellow oleander) oil biodiesel synthesis via Musa paradisiacal (plantain) peels as heterogeneous base catalyst: A case of artificial neural network vs. response surface methodology. Industrial Crops and Products 53:314–22. doi:10.1016/j.indcrop.2013.12.046.
  • Bhowmik, S., R. S. Panua, D. Debroy, and A. Paul. 2017. Artificial neural network prediction of diesel engine performance and emission fueled with diesel-kerosene-ethanol blends: A fuzzy based optimization. Journal of Energy Resources Technology 139:4. doi:10.1115/1.4035886.
  • Chakraborty, R., and H. Sahu. 2014. Intensification of biodiesel production from waste goat tallow using infrared radiation: Process evaluation through response surface methodology and artificial neural network. Applied Energy 114:827–36. doi:10.1016/j.apenergy.2013.04.025.
  • Chen, Y. H., T. H. Chiang, and J. H. Chen. 2012. An optimum biodiesel combination: Jatropha and soapnut oil biodiesel blends. Fuel 92:377–80. doi:10.1016/j.fuel.2011.08.018.
  • Das, S., A. Bhattacharya, S. Haldar, A. Ganguly, G. Sai, Y. P. Ting, and P. K. Chatterjee. 2015. Optimization of enzymatic saccharification of water hyacinth biomass for bio-ethanol: Comparison between artificial neural network and response surface methodology. Sustainable Materials and Technologies 3:17–28.
  • Haykin, S. 1998. Neural networks. Englewood Cliffs, New Jersey, USA: Prentice Hall.
  • Himmelblau, D. 2000. Applications of artificial neural networks in chemical engineering. Korean Journal of Chemical Engineering 17:373–92. doi:10.1007/BF02706848.
  • Kara-Togun, N., and S. Baysec. 2010. Prediction of torque and specific fuel consumption of a gasoline engine by using artificial neural networks. Applied Energy 87:349–55. doi:10.1016/j.apenergy.2009.08.016.
  • Kisi, O. 2010. River suspended sediment concentration modeling using a neural differential evolution approach. Journal of Hydrology 389:227–35. doi:10.1016/j.jhydrol.2010.06.003.
  • Kline, S. J., and F. A. McClintock. 1953. Describing uncertainties in single-sample experiments. Mechanical Engineering 78:3–8.
  • Kumar, S., S. Jain, and H. Kumar. 2017. Process parameter assessment of biodiesel production from a Jatropha–Algae oil blend by response surface methodology and artificial neural network. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 22:2119–215. doi:10.1080/15567036.2017.1403514.
  • Lahiri, S. K., and K. C. Ghanta. 2009. Artificial neural network model with the parameter tuning assisted by a differential evolution technique: The study of the hold up of the slurry flow in a pipeline. Chemical Industry & Chemical Engineering Quarterly 15:103–17. UDC 621.643.2:517.9:621.6.07. doi:10.2298/CICEQ0902103L.
  • Lane, D. 2011. Online statistics education. In International encyclopedia of statistical science, ed. M. Lovric. New York, NY: Springer.
  • Lawrynczuk, M. 2008. Modelling and nonlinear predictive control of a yeast fermentation biochemical reactor using neural networks. Chemical Engineering Journal 145:290–307. doi:10.1016/j.cej.2008.08.005.
  • Lee, H. V., R. Yunus, J. C. Juan, and Y. H. TaufiqYap. 2011. Process optimization design for jatropha-based biodiesel production using response surface methodology. Fuel Process Technology 92:2420–28. doi:10.1016/j.fuproc.2011.08.018.
  • Montgomery, D. C. 2008. Design and analysis of experiments. New York, NY, USA: John Wiley & Sons.
  • Mustafa, B. 2011. Potential alternatives to edible oils for biodiesel production. A review of current work. Energy Conversion and Management 52:1479. doi:10.1016/j.enconman.2010.10.011.
  • Nagy, Z. K. 2007. Model based control of a yeast fermentation bioreactor using optimally designed artificial neural networks. Chemical Engineering Journal 127:95–109. doi:10.1016/j.cej.2006.10.015.
  • Patil, P. D., and S. Deng. 2009. Optimization of biodiesel production from edible and non-edible vegetable oils. Fuel 88:1302–06. doi:10.1016/j.fuel.2009.01.016.
  • Rasimoğlu, N., and H. Temur. 2014. Cold flow properties of biodiesel obtained from corn oil. Energy 68:57–60. doi:10.1016/j.energy.2014.02.048.
  • Rezaei, J., M. Shahbakhti, B. Bahri, and A. A. Aziz. 2015. Performance prediction of HCCI engines with oxygenated fuels using artificial neural networks. Applied Energy 138:460–73. doi:10.1016/j.apenergy.2014.10.088.
  • Sebayang, A., H. H. Masjuki, H. C. Ong, S. Dharma, A. S. Silitonga, F. Kusumo, and J. Milano. 2017. Optimization of bioethanol production from sorghum grains using artificial neural networks integrated with ant colony. Industrial Crops and Products 97:146–55. doi:10.1016/j.indcrop.2016.11.064.
  • Wadumesthrige, K., J. C. Smith, J. R. Wilson, S. O. Salley, and K. Y. Simon. 2008. Investigation of the parameters affecting the cetane number of biodiesel. Journal of the American Oil Chemists’ Society 85:1073–81. doi:10.1007/s11746-008-1290-2.
  • Xin, Y. 1999. Evolving artificial neural networks. Proceedings of the IEEE.87: 1423–47.
  • Yuan, W., A. C. Hansen, and Q. Zhang. 2005. Vapor pressure and normal boiling point predictions for pure methyl esters and biodiesel fuels. Fuel 84:943–50. doi:10.1016/j.fuel.2005.01.007.
  • Zeynab, A., O. HwaiChyuan, D. M. Harrison., F. Kusumo., M. Hoora, and I. Zul. 2017. Biodiesel production by lipase-catalyzed transesterification of Ocimum basilicum L. (Sweet Basil) Seed Oil. Energy Conversion and Management 132:82–90. doi:10.1016/j.enconman.2016.11.017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.