136
Views
0
CrossRef citations to date
0
Altmetric
Articles

Kinetics of the thermal decomposition of Eucommia ulmoides Oliver leaves and its fermentation products

, , , &
Pages 1315-1325 | Received 23 May 2018, Accepted 14 Oct 2018, Published online: 20 Nov 2018

References

  • Aboulkas, A., K. El Harfi, and A. El Bouadili. 2010. Thermal degradation behaviors of polyethylene and polypropylene. Part I: Pyrolysis kinetics and mechanisms. Energy Conversion and Management 51:1363–69. doi:10.1016/j.enconman.2009.12.017.
  • Cardona Alzate, C. A., J. C. Solarte Toro, and A. Gómez Peña. 2018. Fermentation, thermochemical and catalytic processes in the transformation of biomass through efficient biorefineries. Catalysis Today 302:61–72. doi:10.1016/j.cattod.2017.09.034.
  • Cheng, Q. P., M. Jiang, Z. H. Chen, X. Wang, and B. Xiao. 2016. Pyrolysis and kinetic behavior of banana stem using thermogravimetric analysis. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 38 (22):3383–90. doi:10.1080/15567036.2016.1153754.
  • Coats, A. W., and J. P. Redfern. 1964. Kinetic parameters from thermogravimetric data. Nature 20 (68):68–69. doi:10.1038/201068a0.
  • de Farias Silva, C. E., D. Meneghello, and A. Bertucco. 2018. A systematic study regarding hydrolysis and ethanol fermentation from microalgal biomass. Biocatalysis and Agricultural Biotechnology 14:172–82. doi:10.1016/j.bcab.2018.02.016.
  • Flynn, J. H., and L. A. Wall. 1996. A quick, direct method for the determination of activation energy from thermogravimetric data. Journal of Polymer Science Part C: Polymer Letters Banner 4:323–28. doi:10.1002/pol.1966.110040504.
  • Garcia-Maraver, A., J. A. Perez-Jimenez, F. Serrano-Bernardo, and M. Zamorano. 2015. Determination and comparison of combustion kinetics parameters of agricultural biomass from olive trees. Renewable Energy 83:897–904. doi:10.1016/j.renene.2015.05.049.
  • Gil, M. V., D. Casal, C. Pevida, J. J. Pis, and F. Rubiera. 2010. Thermal behavior and kinetics of coal/biomass blends during co-combustion. Bioresource Technology 101:5601–08. doi:10.1016/j.biortech.2010.02.008.
  • He, M. Z., J. Jia, J. M. Li, B. Wu, W. P. Huang, M. Liu, Y. Li, S. L. Yang, H. Ouyang, and Y. L. Feng. 2018a. Application of characteristic ion filtering with ultra-high performance liquid chromatography quadrupole time of flight tandem mass spectrometry for rapid detection and identification of chemical profiling in Eucommia ulmoides Oliv. Journal of Chromatography A 1554:81–91. doi:10.1016/j.chroma.2018.04.036.
  • He, X. R., J. H. Wang, M. X. Li, D. G. Hao, Y. Yang, C. L. Zhang, R. He, and R. Tao. 2014. Eucommia ulmoides Oliv.: Ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine. Journal of Ethnopharmacology 151:78–92. doi:10.1016/j.jep.2013.11.023.
  • He, Y. Y., C. Chang, P. Li, X. L. Han, H. L. Li, S. Q. Fang, J. Y. Chen, and X. J. Ma. 2018b. Thermal decomposition and kinetics of coal and fermented cornstalk using thermogravimetric analysis. Bioresource Technology 259:294–303. doi:10.1016/j.biortech.2018.03.043.
  • Huang, X., J. P. Cao, X. Y. Zhao, J. X. Wang, X. Fan, Y. P. Zhao, and X. Y. Wei. 2016. Pyrolysis kinetics of soybean straw using thermogravimetric analysis. Fuel 169:93–98. doi:10.1016/j.fuel.2015.12.011.
  • Islam, M. A., M. Asif, and B. H. Hameed. 2015. Pyrolysis kinetics of raw and hydrothermally carbonized karanj (Pongamia pinnata) fruit hulls via thermogravimetric analysis. Bioresource Technology 179C:227–33. doi:10.1016/j.biortech.2014.11.115.
  • Islam, M. A., M. Auta, G. Kabir, and B. H. Hameed. 2016. A thermogravimetric analysis of the combustion kinetics of karanja (Pongamia pinnata) fruit hulls char. Bioresource Technology 200:335–41. doi:10.1016/j.biortech.2015.09.057.
  • Islam, M. A., G. Kabir, M. Asif, and B. H. Hameed. 2015. Combustion kinetics of hydrochar produced from hydrothermal carbonization of karanj (Pongamia pinnata) fruit hulls via thermogravimetric analysis. Bioresource Technology 194:14–20. doi:10.1016/j.biortech.2015.06.094.
  • Kang, K., L. Qiu, M. Q. Zhu, G. T. Sun, Y. J. Wang, and R. C. Sun. 2018a. Codensification of agroforestry residue with bio-oil for improved fuel pellets. Energy & Fuels : an American Chemical Society Journal 32:598−606. doi:10.1021/acs.energyfuels.7b03482.
  • Kang, K., M. Q. Zhu, G. T. Sun, L. Qiu, X. H. Guo, V. Meda, and R. C. Sun. 2018b. Codensification of Eucommia ulmoides Oliver stem with pyrolysis oil and char for solid biofuel: An optimization and characterization study. Applied Energy 223:347–57. doi:10.1016/j.apenergy.2018.04.069.
  • Kissinger, H. E. 1957. Reaction kinetics in differential thermal analysis. Analytical Chemistry 29:1702–06. doi:10.1021/ac60131a045.
  • Lee, G. H., H. Y. Lee, M. K. Choi, A. H. Choi, T. S. Shin, and H. J. Chae. 2018. Eucommia ulmoides leaf (EUL) extract enhances NO production in ox-LDL treated human endothelial cells. Biomedicine & Pharmacotherapy 97:1164–72. doi:10.1016/j.biopha.2017.11.035.
  • Li, K., J. C. Qin, C. G. Liu, and F. W. Bai. 2016a. Optimization of pretreatment, enzymatic hydrolysis and fermentation for more efficient ethanol production by Jerusalem artichoke stalk. Bioresource Technology 221:188–94. doi:10.1016/j.biortech.2016.09.021.
  • Li, L. L., Y. P. Guo, C. C. Zhao, M. X. Wei, J. L. Liu, Y. G. Zu, F. Wang, and L. Yang. 2016b. Microwave-assisted method for simultaneous hydrolysis and extraction for preparation of geniposidic acid from Eucommia ulmoides bark using basic imidazolide ionic liquid. International Journal of Chemical Engineering 5:1–11. doi:10.1155/2016/2135350.
  • Ma, F. Y., J. J. Wang, Y. L. Zeng, X. Y. Zhang, L. F. Yan, and J. G. Wu. 2011. Influence of fungal pretreatment on thermogravimetric characteristics and fast pyrolysis vapors of corn stover. Biofuels 2 (5):557–67. doi:10.4155/bfs.11.129.
  • Mangut, V., E. Sabio, J. Gañán, J. F. González, A. Ramiro, C. M. González, S. Román, and A. Al-Kassir. 2006. Thermogravimetric study of the pyrolysis of biomass residues from tomato processing industry. Fuel Processing Technology 87 (2):109–15. doi:10.1016/j.fuproc.2005.08.006.
  • Ounas, A., A. Aboulkas, K. El Harfi, A. Bacaoui, and A. Yaacoubi. 2011. Pyrolysis of olive residue and sugar cane bagasse: Non-isothermal thermogravimetric kinetic analysis. Bioresource Technology 102:11234–38. doi:10.1016/j.biortech.2011.09.010.
  • Ozawa, T. 1965. A new method of analyzing thermogravimetric data. B Chemical Social Japanese 38:1881–86. doi:10.1246/bcsj.38.1881.
  • Petrovic, Z. S., and Z. Z. Zavargo. 1986. Reliability of methods for determination of kinetic parameters from thermogravimetry and DSC measurements. Journal of Applied Polymer Science 32:4353–67. doi:10.1002/app.1986.070320406.
  • Sait, H. H., A. Hussain, A. A. Salema, and F. N. Ani. 2012. Pyrolysis and combustion kinetics of date palm biomass using thermogravimetric analysis. Bioresource Technology 118:382–89. doi:10.1016/j.biortech.2012.04.081.
  • Shen, D. K., S. Gu, K. H. Luo, A. V. Bridgwater, and M. X. Fang. 2009. Kinetic study on thermal decomposition of woods in oxidative environment. Fuel 88:1024–30. doi:10.1016/j.fuel.2008.10.034.
  • Tsamba, A. J., W. Yang, and W. Blasiak. 2006. Pyrolysis characteristics and global kinetics of coconut and cashew nut shells. Fuel Processing Technology 87:523–30. doi:10.1016/j.fuproc.2005.12.002.
  • Wainaina, S., I. Sarvari Horvath, and M. J. Taherzadeh. 2018. Biochemicals from food waste and recalcitrant biomass via syngas fermentation: A review. Bioresource Technology 248:113–21. doi:10.1016/j.biortech.2017.06.075.
  • Wang, Z. H., C. Z. Wang, and M. J. Peng. 2017. Thermogravimetric and kinetics analyses of olive waste treated by ultrasound-assisted enzyme hydrolysis under air atmosphere. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 39:2112–18. doi:10.1080/15567036.2017.1403512.
  • Xiang, Y. L., Y. X. Xiang, and L. P. Wang. 2017. Kinetics of the thermal decomposition of polar sawdust. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 39:213–18. doi:10.1080/15567036.2016.1212291.
  • Yahiaoui, M., H. Hadoun, I. Toumert, and A. Hassani. 2015. Determination of kinetic parameters of phlomis bovei de Noé using thermogravimetric analysis. Bioresource Technology 196:441–47. doi:10.1016/j.biortech.2015.07.082.
  • Yan, H. X., F. F. Hou, H. Zhao, H. N. Wang, S. Gao, M. Wu, P. Y. Yu, J. F. Liu, N. Li, Y. W. Sun, et al. 2016. Pyrolysis kinetics of invasive coastal plant Spartina anglica using thermogravimetric analysis. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 38 (19):2867–75. doi:10.1080/15567036.2015.1120825.
  • Yorulmaz, S. Y., and A. T. Atimtay. 2009. Investigation of combustion kinetics of treated and untreated waste wood samples with thermogravimetric analysis. Fuel Processing Technology 90:939–46. doi:10.1016/j.fuproc.2009.02.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.