10,604
Views
180
CrossRef citations to date
0
Altmetric
Review

Carbon capture and utilization technologies: a literature review and recent advances

ORCID Icon, , , , &
Pages 1403-1433 | Received 07 Jul 2018, Accepted 14 Oct 2018, Published online: 21 Nov 2018

References

  • Abdeen, F. R. H., M. Mel, M. S. Jami, S. I. Ihsan, and A. F. Ismail. 2016a. A review of chemical absorption of carbon dioxide for biogas upgrading. Chinese Journal of Chemical Engineering. doi:10.1016/j.cjche.2016.05.006.
  • Abdeen, F. R. H., M. Mel, M. S. Jami, S. I. Ihsan, and A. F. Ismail. 2016b. A review of chemical absorption of carbon dioxide for biogas upgrading. Chinese Journal of Chemical Engineering 24 (6):693–702. doi:10.1016/j.cjche.2016.05.006.
  • Abdullah, B., N. A. A. Ghani, and D. V. N. Vo. 2017. Recent advances in dry reforming of methane over ni-based catalysts. Journal of Cleaner Production. doi:10.1016/j.jclepro.2017.05.176.
  • Abla, M., J. C. Choi, and T. Sakakura. 2001. Halogen-free process for the conversion of carbon dioxide to urethanes by homogeneous catalysis. Chemical Communications 2238–39. doi:10.1039/b106201h.
  • Abla, M., J.-C. Choi, and T. Sakakura. 2004. Nickel-Catalyzed Dehydrative Transformation of CO2 to Urethanes. Green Chemistry. doi:10.1039/b408429b.
  • Albo, J., L. A. Alvarez, J. M. Andres, C. Bartolome, S. Burgos, and P. Castro.2013. Usos Del CO2: un camino hacia la sostenibilidad. Journal of Chemical Information and Modeling, Vol. 1. doi: 10.1017/CBO9781107415324.004.
  • Alex, S. 2015. Learning to Love CO2. Chemical Engineering News 93 (45):11–16.
  • Amaro, H. M., A. Catarina Guedes, and F. Xavier Malcata. 2011. Advances and perspectives in using microalgae to produce biodiesel. Applied Energy 88 (10):3402–10. doi:10.1016/j.apenergy.2010.12.014.
  • Ammar, M., Y. Cao, H. Peng, L. G. Wang, J. Q. Chen, and H. Q. Li. 2017. Zn-co bimetallic supported zsm-5 catalyst for phosgene-free synthesis of hexamethylene–1,6–diisocyanate by thermal decomposition of hexamethylene–1,6–dicarbamate. Chinese Chemical Letters. doi:10.1016/j.cclet.2017.03.015.
  • An, H., L. Zhang, B. Yuan, X. Zhao, and Y. Wang. 2014. Influence of solvent on reaction path to synthesis of methyl n-phenyl carbamate from aniline, CO2 and methanol. Chinese Journal of Chemical Engineering 22 (5):607–10. doi:10.1016/S1004-9541(14)60097-5.
  • An, X., Y. Zuo, Q. Zhang, and J. Wang. 2009. Methanol synthesis from co2hydrogenation with a Cu/Zn/Al/Zr fibrous catalyst. Chinese Journal of Chemical Engineering 17(1):88–94. Chemical Industry and Engineering Society of China (CIESC) and Chemical Industry Press (CIP). doi: 10.1016/S1004-9541(09)60038-0.
  • Anastas, P. T., and J. B. Zimmerman. 2013. Innovations in Green Chemistry and Green Engineering. Berlin, Germany: Springer.
  • Aramouni, N., J. G. Abdel Karim, B. Touma, A. Tarboush, J. Zeaiter, and M. N. Ahmad. 2018. Catalyst design for dry reforming of methane: analysis review. Renewable and Sustainable Energy Reviews. doi:10.1016/j.rser.2017.09.076.
  • Aresta, M. 2010. Carbon Dioxide as Chemical Feedstock. Carbon Dioxide as Chemical Feedstock. New Jersey: Wiley. doi: 10.1002/9783527629916.
  • Aydin, G. 2014. The modeling of coal-related co2 emissions and projections into future planning. Energy Sources Part A: Recovery, Utilization & Environmental Effects. doi:10.1080/15567036.2012.760018.
  • Bachu, S., J. C. Shaw, and R. M. Pearson. 2004. Estimation of Oil Recovery and CO2 Storage Capacity in CO2 EOR Incorporating the Effect of Underlying Aquifers. In SPE/DOE Symposium on Improved Oil Recovery, Society of Petroleum Engineers. doi: 10.2118/89340-MS.
  • Baciocchi, R., A. Corti, G. Costa, L. Lombardi, and D. Zingaretti. 2011. Storage of carbon dioxide captured in a pilot-scale biogas upgrading plant by accelerated carbonation of industrial residues. Energy Procedia 4:4985–92. Elsevier. doi:10.1016/j.egypro.2011.02.469.
  • Baciocchi, R., E. Carnevale, G. Costa, R. Gavasci, L. Lombardi, T. Olivieri, L. Zanchi, and D. Zingaretti. 2013. Performance of a biogas upgrading process based on alkali absorption with regeneration using air pollution control residues. Waste Management 33 (12):2694–705. doi:10.1016/j.wasman.2013.08.022.
  • Bansode, A., and A. Urakawa. 2014. Continuous DMC Synthesis from CO2 and methanol over a CeO2 catalyst in a fixed bed reactor in the presence of a dehydrating agent. ACS Catalysis 4 (11):3877–80. doi:10.1021/cs501221q.
  • Baran, P., K. Zarębska, P. Krzystolik, J. Hadro, and A. Nunn. 2014. CO2-ECBM and CO2 sequestration in polish coal seam – experimental study. Journal of Sustainable Mining 13 (2):22–29. doi:10.7424/jsm140204.
  • Beckman, E. J. 2004. Supercritical and near-critical Co2 in green chemical synthesis and processing. The Journal of Supercritical Fluids 28 (2–3):121–91. doi:10.1016/S0896-8446(03)00029-9.
  • Bektesevic, S., A. M. Kleman, A. E. Marteel-Parrish, and M. A. Abraham. 2006. Hydroformylation in supercritical carbon dioxide: catalysis and benign solvents. Journal of Supercritical Fluids 38 (2):232–41. doi:10.1016/j.supflu.2006.01.019.
  • Bilgen, S. 2016. Pollution control techniques and technologies for cleaner coal. Energy Sources, Part A: Recovery, Utilization and Environmental Effects. doi:10.1080/15567036.2016.1152327.
  • Boyère, C., C. Jérôme, and A. Debuigne. 2014. Input of supercritical carbon dioxide to polymer synthesis: an overview. European Polymer Journal. doi:10.1016/j.eurpolymj.2014.07.019.
  • Brentner, L. B., M. J. Eckelman, and J. B. Zimmerman. 2011. Combinatorial life cycle assessment to inform process design of industrial production of algal biodiesel. Environmental Science and Technology 45 (16):7060–67. doi:10.1021/es2006995.
  • Busch, A., and Y. Gensterblum. 2011. CBM and CO2-ECBM Related Sorption Processes in Coal: A Review. International Journal of Coal Geology. doi:10.1016/j.coal.2011.04.011.
  • Campbell, P. K., T. Beer, and D. Batten. 2011. Life cycle assessment of biodiesel production from microalgae in ponds. Bioresource Technology 102 (1):50-56. doi:10.1016/j.biortech.2010.06.048.
  • Chang, H., L. Qingshuo, X. Cui, H. Wang, B. Zhanwei, C. Qiao, and T. Lin. 2018. Conversion of carbon dioxide into cyclic carbonates using wool powder-ki as catalyst. Journal of CO2 Utilization 24:174–79. doi:10.1016/j.jcou.2017.12.017.
  • Chaturvedi, D., N. Mishra, and V. Mishra. 2007. A high yielding, one-pot synthesis of dialkyl carbonates from alcohols using mitsunobu’s reagent. Tetrahedron Letters 48 (29):5043–45. doi:10.1016/j.tetlet.2007.05.103.
  • Choi, J. C., L. N. He, H. Yasuda, and T. Sakakura. 2002. Selective and High Yield Synthesis of Dimethyl Carbonate Directly from Carbon Dioxide and Methanol. Green Chemistry 4 (3):230–34. doi:10.1039/b200623p.
  • Collett, T. S. 2002. Energy resource potential of natural gas hydrates. AAPG Bulletin. doi:10.1306/61EEDDD2-173E-11D7-8645000102C1865D.
  • Covestro. 2017. “Award-winning solutions with polyurethane foam.” http://press.covestro.com/news.nsf/id/Award-winning-solutions-with-polyurethane-foam.
  • Cuéllar-Franca, R. M., and A. Azapagic. 2015. Carbon capture, storage and utilisation technologies: a critical analysis and comparison of their life cycle environmental impacts. Journal of CO2 Utilization. doi:10.1016/j.jcou.2014.12.001.
  • Dai, W. L., S. L. Luo, S. F. Yin, and C. T. Au. 2009. The direct transformation of carbon dioxide to organic carbonates over heterogeneous catalysts. Applied Catalysis A: General. doi:10.1016/j.apcata.2009.06.045.
  • Dai, Z., R. Middleton, H. Viswanathan, J. Fessenden-Rahn, J. Bauman, R. Pawar, S.-Y. Lee, and B. Mcpherson. 2014. An integrated framework for optimizing CO2 sequestration and enhanced oil recovery. Environmental Science & Technology Letters 1:49–54. doi:10.1021/ez4001033.
  • Demirbaş, A. 2009. Production of biodiesel from algae oils. Energy Sources, Part A: Recovery, Utilization and Environmental Effects 31 (2):163–68. doi:10.1080/15567030701521775.
  • Devetta, L., P. Canu, A. Bertucco, and K. Steiner. 1997. Modelling of a trickle-bed reactor for a catalytic hydrogenation in supercritical CO2. Chemical Engineering Science 52 (21–22):4163–69. doi:10.1016/S0009-2509(97)00258-3.
  • Djas, M., and M. Henczka. 2018. Reactive extraction of carboxylic acids using organic solvents and supercritical fluids: a review. Separation and Purification Technology 201 (September 2017):106–19. doi:10.1016/j.seppur.2018.02.010.
  • Du, Z., L. Qinghai, M. Tong, L. Shaohua, and L. Haoran. 2008. Electricity generation using membrane-less microbial fuel cell during wastewater treatment. Chinese Journal of Chemical Engineering 16 (5):772–77. doi:10.1016/S1004-9541(08)60154-8.
  • Ebrahimi, A., A. Sarrafi, and M. Tahmooresi. 2017. Methane and hydrogen production from carbon dioxide by ZnS, CuS, and CuS Doped ZnS nanophotocatalyst deposited on montmorillonite. Energy Sources, Part A: Recovery, Utilization and Environmental Effects. doi:10.1080/15567036.2016.1255678.
  • Egawa, C. 2018. Methane Dry Reforming Reaction on Ru(0 0 1) Surfaces. Journal of Catalysis 358:35–42. doi:10.1016/j.jcat.2017.11.010.
  • Elbashir, N., S. Afzal, D. Sengupta, and M. El-Halwagi. 2018. CO2 Utilization through Dry Reforming of Methane Process. ARC 18. Energy and Environment - Paper Presentation. doi: 10.5339/qfarc.2018.EEPP1093
  • El-Sheekh, M. M., A. El-Gamal, A. E. Bastawess, and A. El-Bokhomy. 2017. Production and characterization of biodiesel from the unicellular green alga scenedesmus obliquus. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. doi:10.1080/15567036.2016.1263257.
  • Engels, H. W., H. G. Pirkl, R. W. Reinhard Albers, J. K. Albach, A. Hoffmann, H. Casselmann, and J. Dormish. 2013. Polyurethanes: versatile materials and sustainable problem solvers for today’s challenges. Angewandte Chemie - International Edition. doi:10.1002/anie.201302766.
  • Englezos, P. 1993. Clathrate Hydrates. Industrial & Engineering Chemistry Research. doi:10.1021/ie00019a001.
  • European Comission. 2016. “European Comission on Reducing Emissions from Aviation.” EU Comission Report.
  • Fan, J., L. Zhu, P. Jiang, L. Luling, and H. Liu. 2016. Comparative exergy analysis of chemical looping combustion thermally coupled and conventional steam methane reforming for hydrogen production. Journal of Cleaner Production 131:247–58. doi:10.1016/j.jclepro.2016.05.040.
  • Feroci, M., M. Orsini, L. Rossi, G. Sotgiu, and A. Inesi. 2007. Electrochemically promoted c-n bond formation from amines and CO2 in ionic liquid BMIm-BF4: synthesis of carbamates. Journal of Organic Chemistry 72 (1):200–03. doi:10.1021/jo061997c.
  • Feroci, M., M. A. Casadei, M. Orsini, L. Palombi, and A. Inesi. 2003. Cyanomethyl anion/carbon dioxide system: an electrogenerated carboxylating reagent. synthesis of carbamates under mild and safe conditions. Journal of Organic Chemistry 68 (4):1548–51. doi:10.1021/jo0266036.
  • Fujioka, T., K. Jyosui, H. Nishimura, and K. Tei. 2003. Extraction of Methane from Methane Hydrate Using Lasers. Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers. doi:10.1143/JJAP.42.5648.
  • Gao, J., L. Chun, L. Weizao, H. Jinpeng, W. Lin, and L. Qiang. 2018. Process simulation and energy integration in the mineral carbonation of blast furnace slag. Chinese Journal of Chemical Engineering. doi: 10.1016/j.cjche.2018.04.012.
  • Gao, Y., G. Lin, Y. Qin, X. Wang, and F. Wang. 2012. Dicarboxylic acid promoted immortal copolymerization for controllable synthesis of low-molecular weight oligo(carbonate-ether) diols with tunable carbonate unit content. Journal of Polymer Science, Part A: Polymer Chemistry 50 (24):5177–84. doi:10.1002/pola.26366.
  • Garcia-Herrero, I., R. Marisa, C. Franca, V. M. Enríquez-Gutiérrez, M. Alvarez-Guerra, A. Irabien, and A. Azapagic. 2016. Environmental assessment of dimethyl carbonate production: comparison of a novel electrosynthesis route utilizing CO2 with a commercial oxidative carbonylation process. ACS Sustainable Chemistry and Engineering 4 (4):2088–97. doi:10.1021/acssuschemeng.5b01515.
  • Germain, N., I. Müller, R. A. Matthias Hanauer, R. B. Paciello, O. Trapp, and T. Schaub. 2016. Synthesis of Industrially Relevant Carbamates towards Isocyanates Using Carbon Dioxide and Organotin(IV) Alkoxides. ChemSusChem 9 (13):1586–90. doi:10.1002/cssc.201600580.
  • Ghoodjani, E., and S. H. Bolouri. 2015. Green balance software: an integrated model for screening of CO2-EOR and CCS projects. Energy Sources, Part A: Recovery, Utilization and Environmental Effects. doi:10.1080/15567036.2011.631965.
  • Giaconia, A., O. Scialdone, M. Apostolo, G. Filardo, and A. Galia. 2008. Surfactant assisted polymerization of tetrafluoroethylene in supercritical carbon dioxide with a pilot scale batch reactor. Journal of Polymer Science, Part A: Polymer Chemistry 46 (1):257–66. doi:10.1002/pola.22377.
  • Godec, M. L., V. A. Kuuskraa, and P. Dipietro. 2013. Opportunities for using anthropogenic CO2 for enhanced oil recovery and CO2 storage. Energy & Fuels 27 (8):4183–89. doi:10.1021/ef302040u.
  • Güner, F., and E. Genceli. 2015. Feasibility Study of MgSO4 hydrate Production by Eutectic CO2 clathrate Crystallization. Chemical Engineering Research and Design. doi:10.1016/j.cherd.2014.10.019.
  • Hamelinck, C. N., A. P. C. Faaij, W. C. Turkenburg, F. Van Bergen, H. J. M. Pagnier, O. H. M. Barzandji, K. H. A. A. Wolf, and G. J. Ruijg. 2002. CO2 enhanced coalbed methane production in the Netherlands. Energy 27 (7):647–74. doi:10.1016/S0360-5442(02)00012-9.
  • Hassani, R., S. Jamal, M. Haghighi, A. A. Eslami, F. Rahmani, and N. Rahemi. 2016. Sol–Gel vs. Impregnation Preparation of MgO and CeO2 Doped Ni/Al2O3 Nanocatalysts Used in Dry Reforming of Methane: Effect of Process Conditions, Synthesis Method and Support Composition. International Journal of Hydrogen Energy 41 (11):5335–50. doi:10.1016/j.ijhydene.2016.02.002.
  • Hatzigeorgiou, E., H. Polatidis, and D. Haralambopoulos. 2010. Energy CO2 emissions for 1990-2020: a decomposition analysis for EU-25 and Greece. Energy Sources, Part A: Recovery, Utilization and Environmental Effects. doi:10.1080/15567030902937101.
  • Helwani, Z., A. D. Wiheeb, J. Kim, and M. R. Othman. 2016. In-situ mineralization of carbon dioxide in a coal-fired power plant. Energy Sources, Part A: Recovery, Utilization and Environmental Effects. doi:10.1080/15567036.2013.813991.
  • Hertwich, E. G., M. Aaberg, B. Singh, and A. H. Strømman. 2008. Life-cycle assessment of carbon dioxide capture for enhanced oil recovery. Chinese Journal of Chemical Engineering 16 (3):343–53. doi:10.1016/S1004-9541(08)60085-3.
  • Honda, M., M. Tamura, K. Nakao, K. Suzuki, Y. Nakagawa, and K. Tomishige. 2014c. Direct cyclic carbonate synthesis from CO2 and diol over carboxylation/hydration cascade catalyst of CeO2 with 2-cyanopyridine. ACS Catalysis. doi:10.1021/cs500301d.
  • Honda, M., M. Tamura, Y. Nakagawa, K. Nakao, K. Suzuki, and K. Tomishige. 2014a. Organic Carbonate Synthesis from CO2 and Alcohol over CeO2 with 2-Cyanopyridine: Scope and Mechanistic Studies. Journal of Catalysis 318:95–107. doi:10.1016/j.jcat.2014.07.022.
  • Honda, M., M. Tamura, Y. Nakagawa, and K. Tomishige. 2014b. Catalytic CO2 conversion to organic carbonates with alcohols in combination with dehydration system. Catalysis Science & Technology 4 (9):2830–45. doi:10.1039/C4CY00557K.
  • Honda, M., M. Tamura, Y. Nakagawa, S. Sonehara, K. Suzuki, K. I. Fujimoto, and K. Tomishige. 2013. Ceria-catalyzed conversion of carbon dioxide into dimethyl carbonate with 2-cyanopyridine. ChemSusChem 6 (8):1341–44. doi:10.1002/cssc.201300229.
  • Honda, M., S. Kuno, S. Sonehara, K. I. Fujimoto, K. Suzuki, Y. Nakagawa, and K. Tomishige. 2011. Tandem Carboxylation-Hydration Reaction System from Methanol, CO2 and Benzonitrile to Dimethyl Carbonate and Benzamide Catalyzed by CeO2. ChemCatChem 3 (2):365–70. doi:10.1002/cctc.201000339.
  • Hooker, J. M., A. T. Reibel, S. M. Hill, M. J. Schueller, and J. S. Fowler. 2009. One-pot, direct incorporation of [11C]CO2 into carbamates. Angewandte Chemie International Edition 48 (19):3482–3485. doi:10.1002/anie.v48:19.
  • Hou, Z., N. Theyssen, and W. Leitner. 2007. Palladium nanoparticles stabilised on PEG-modified silica as catalysts for the aerobic alcohol oxidation in supercritical carbon dioxide. Green Chemistry : an International Journal and Green Chemistry Resource : GC 9 (2):127–32. doi:10.1039/B606740A.
  • Hyatt, J. A. 1984. Liquid and supercritical carbon dioxide as organic solvents. The Journal of Organic Chemistry. doi:10.1021/jo00200a016.
  • IEA. 2015. “Storing CO2 through enhanced oil recovery.” International Energy Agency, Paris, France. http://www.iea.org/publications/insights/insightpublications/Storing_CO2_through_Enhanced_Oil_Recovery.pdf%5Cnhttp://www.iea.org/publications/insights/insightpublications/CO2EOR_3Nov2015.pdf.
  • Iijima, T., and T. Yamaguchi. 2008a. Efficient regioselective carboxylation of phenol to salicylic acid with supercritical CO2 in the presence of aluminium bromide. Journal of Molecular Catalysis A: Chemical 295 (1–2):52–56. doi:10.1016/j.molcata.2008.07.017.
  • Iijima, T., and T. Yamaguchi. 2008b. K2CO3-catalyzed direct synthesis of salicylic acid from phenol and supercritical CO2. Applied Catalysis A: General 345 (1):12–17. doi:10.1016/j.apcata.2008.03.037.
  • IPCC 2005. IPCC special report on carbon dioxide capture and storage. prepared by working group iii of the intergovernmental panel on climate change. In IPCC Special Report on Carbon Dioxide Capture and Storage 2:442. doi: 10.1002/anie.201000431.
  • Jaramillo, P., W. Michael Griffin, and S. T. McCoy. 2009. Life cycle inventory of CO2 in an enhanced oil recovery system. Environmental Science & Technology 43 (21):8027–32. doi:10.1021/es902006h.
  • Javanmardi, J., and M. Moshfeghian. 2003. Energy Consumption and Economic Evaluation of Water Desalination by Hydrate Phenomenon. Applied Thermal Engineering. doi:10.1016/S1359-4311(03)00023-1.
  • Jiang, L. L., A. R. Li, J. F. Xu, and Y. J. Liu. 2016. Effects of SDS and SDBS on CO2 Hydrate Formation, Induction Time, Storage Capacity and Stability at 274.15 K and 5.0 MPa. ChemistrySelect. doi:10.1002/slct.201601038.
  • Jiang, Z., T. Xiao, V. L. Kuznetsov, and P. P. Edwards. 2010. Turning carbon dioxide into fuel. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 368 (1923):3343–64. doi:10.1098/rsta.2010.0119.
  • Jikich, S. A., G. S. Bromhal, W. N. Sams, F. B. Gorucu, T. Ertekin, and D. H. Smith. 2004. Economics for Enhanced Coalbed Methane (ECBM) and CO2 Sequestration with Horizontal Wells. In Proceedings - Society of Petroleum Engineers Eastern Regional Meeting.
  • Jo, E. S., A. Xinghai, P. G. Ingole, W. K. Choi, Y. S. Park, and H. K. Lee. 2017. CO2/CH4 separation using inside coated thin film composite hollow fiber membranes prepared by interfacial polymerization. Chinese Journal of Chemical Engineering 25(3):278–87. Elsevier B.V. doi: 10.1016/j.cjche.2016.07.010.
  • Kathiresan, M., and D. Velayutham. 2015. Ionic liquids as an electrolyte for the electro synthesis of organic compounds. Chemical Communications 51 (99):17499–516. doi:10.1039/C5CC06961K.
  • Kember, M. R., F. Jutz, A. Buchard, A. J. P. White, and C. K. Williams. 2012. Di-cobalt(ii) catalysts for the copolymerisation of CO2 and cyclohexene oxide: support for a dinuclear mechanism? Chemical Science 3 (4):1245.
  • Khoo, H. H., J. Bu, R. L. Wong, S. Y. Kuan, and P. N. Sharratt. 2011. Carbon capture and utilization: preliminary life cycle CO2, energy, and cost results of potential mineral carbonation. Energy Procedia 4 (2011):2494-2501. doi:10.1016/j.egypro.2011.02.145.
  • Khoshtinat, N. M., and N. A. S. Amin. 2011. Thermodynamic analysis of carbon dioxide reforming of methane in view of solid carbon formation. Fuel Processing Technology 92 (3):678–91. doi:10.1016/j.fuproc.2010.11.027.
  • Kindermann, N., T. Jose, and A. W. Kleij. 2017. Synthesis of carbonates from alcohols and CO2. Topics in Current Chemistry. doi:10.1007/s41061-016-0101-8.
  • King, M. B., and T. R. Bott. 1993. Extraction of Natural Products Using Near-Critical Solvents. Berlin, Germany: Springer.
  • Kizlink, J., and I. Pastucha. 1995. Preparation of dimethyl carbonate from methanol and carbon dioxide in the presence of sn(iv) and ti(iv) alkoxides and metal acetates. Collection of Czechoslovak Chemical Communications 60 (4):687–92. doi:10.1135/cccc19950687.
  • Kong, D. -L., L. -N. He, and J. -Q. Wang. 2011. Polyethylene glycolenhanced chemoselective synthesis of organic carbamates fromamines, CO2, and alkyl halides. Synthetic Communications 41 (22):3298–3307. doi:10.1080/00397911.2010.517890
  • Kressirer, S., D. Kralisch, A. Stark, U. Krtschil, and V. Hessel. 2013. Agile green process design for the intensified kolbe-schmitt synthesis by accompanying (simplified) life cycle assessment. Environmental Science and Technology 47 (10):5362–71. doi:10.1021/es400085y.
  • Lee, B. Y., H. Y. Kwon, S. Y. Lee, S. J. Na, S.-I. Han, H. Yun, H. Lee, and Y.-W. Park. 2005. Bimetallic anilido-aldimine zinc complexes for epoxide/co2 copolymerization-si. Journal of the American Chemical Society 127 (9):3031–37. doi:10.1021/ja0435135.
  • Lee, W. J., C. P. Tan, R. Sulaiman, and G. H. Chong. 2017. Solubility of red palm oil in supercritical carbon dioxide: measurement and modelling. Chinese Journal of Chemical Engineering Elsevier B.V. doi: 10.1016/j.cjche.2017.09.024.
  • Li, H., and Z. Zhang. 2018. Mining the intrinsic trends of co2 solubility in blended solutions. Journal of CO2 Utilization. doi:10.1016/j.jcou.2018.06.008.
  • Li, Y., J. Li, S. Ding, and H. Zhang. 2016. Co-Optimization of CO2 sequestration and enhanced oil recovery in extra-low permeability reservoir in shanbei. Energy Sources, Part A: Recovery, Utilization and Environmental Effects. doi:10.1080/15567036.2012.724148.
  • Lim, Y. N., C. Lee, and H. Y. Jang. 2014. Metal-free synthesis of cyclic and acyclic carbonates from co2 and alcohols. European Journal of Organic Chemistry 2014 (9):1823–26. doi:10.1002/ejoc.201400031.
  • Lindsey, A. S., and H. Jeskey. 1957. The Kolbe-Schmitt reaction. Chemical Reviews 57 (4):583–620. doi:10.1021/cr50016a001.
  • Linstrom, P. J., and W. G. Mallard. 2014. NIST chemistry webbook, nist standard reference database number 69. National Institute of Standards and Technology 69:20899.
  • Liu, H., L. Yao, H. B. H. Taief, M. Benzina, P. Da Costa, and M. E. Gálvez. 2018a. Natural clay-based ni-catalysts for dry reforming of methane at moderate temperatures. Catalysis Today 306:51–57. doi:10.1016/j.cattod.2016.12.017.
  • Liu, J., L. Yuming, J. Zhang, and H. Dehua. 2016. Glycerol carbonylation with co2 to glycerol carbonate over ceo2 catalyst and the influence of ceo2 preparation methods and reaction parameters. Applied Catalysis A: General 513:9–18. doi:10.1016/j.apcata.2015.12.030.
  • Liu, S., and X. Wang. 2017. Polymers from carbon dioxide: polycarbonates, polyurethanes. Current Opinion in Green and Sustainable Chemistry. doi:10.1016/j.cogsc.2016.08.003.
  • Liu, S., Y. Qin, X. Chen, X. Wang, and F. Wang. 2014. One-pot controllable synthesis of oligo(carbonate-ether) triol using a zn-co-dmc catalyst: the special role of trimesic acid as an initiation-transfer agent. Polymer Chemistry 5 (21):6171–79. doi:10.1039/C4PY00578C.
  • Liu, Z., Z. Pan, Z. Zhang, P. Liu, L. Shang, and B. Li. 2018b. Effect of porous media and sodium dodecyl sulphate complex system on methane hydrate formation. Energy and Fuels. doi:10.1021/acs.energyfuels.8b00041.
  • Lombardi, L., A. Corti, E. Carnevale, R. Baciocchi, and D. Zingaretti. 2011. Carbon dioxide removal and capture for landfill gas up-grading. Energy Procedia 4:465–72. doi:10.1016/j.egypro.2011.01.076.
  • Lombardi, L., R. Baciocchi, E. Carnevale, and A. Corti. 2012. “Investigation of an innovative process for biogas up-grading – pilot plant preliminary results.” Proceedings of ECOS 2012- the 25th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, June 26-29, Perugia, Italy, 1–12.
  • Luo, J., and I. Larrosa. 2017. C−H carboxylation of aromatic compounds through co2 fixation. ChemSusChem. doi:10.1002/cssc.201701058.
  • Ma, K., Q. Bai, L. Zhang, and B. Liu. 2016. Synthesis of flame-retarding oligo(carbonate-ether) diols via double metal cyanide complex-catalyzed copolymerization of PO and CO2 using bisphenol a as a chain transfer agent. RSC Advances 6 (54):48405–10. doi:10.1039/C6RA07325E.
  • Machado, A. S. R., A. V. M. Nunes, and M. N. Da Ponte. 2018. Carbon dioxide utilization—electrochemical reduction to fuels and synthesis of polycarbonates. Journal of Supercritical Fluids 134:150–56. doi:10.1016/j.supflu.2017.12.023.
  • Marriott, R., P. Jessop, and M. Barnes. 2014. CO2-Based Solvents. In Carbon Dioxide Utilisation: Closing the Carbon Cycle 1st ed., 73–96. Amsterdam, Netherlands: Elsevier. doi:10.1016/B978-0-444-62746-9.00006-2.
  • Martín, C., G. Fiorani, and A. W. Kleij. 2015. Recent advances in the catalytic preparation of cyclic organic carbonates. ACS Catalysis 5 (2):1353–70. doi:10.1021/cs5018997.
  • Mashayekhi Mazar, F., M. Alijanianzadeh, Z. Jamshidy Nia, and A. M. Rad. 2017. Introduction to biofuel cells: a biological source of energy. Energy Sources, Part A: Recovery, Utilization and Environmental Effects. doi:10.1080/15567036.2016.1219794.
  • Matsuda, T. 2013. Recent progress in biocatalysis using supercritical carbon dioxide. Journal of Bioscience and Bioengineering 115 (3):233–41. doi:10.1016/j.jbiosc.2012.10.002.
  • Matthessen, R., J. Fransaer, K. Binnemans, and D. E. De Vos. 2014. Electrocarboxylation: towards sustainable and efficient synthesis of valuable carboxylic acids. Beilstein Journal of Organic Chemistry. doi:10.3762/bjoc.10.260.
  • Matthessen, R., J. Fransaer, K. Binnemans, and D. E. De Vos. 2015. Paired electrosynthesis of diacid and diol precursors using dienes and CO2 as the carbon source. Chemical Electrochemistry 2 (1):73–76. doi:10.1002/celc.201402299.
  • Mayadevi, S. 2012. Reactions in Supercritical Carbon Dioxide. Indian Journal of Chemistry 51A:1298–305. doi:10.1002/047084289X.
  • Mazzotti, M., J. Carlos, R. Allam, K. S. Lackner, F. Meunier, E. M. Rubin, J. C. Sanchez, K. Yogo, and R. Zevenhoven. 2005. Mineral carbonation and industrial uses of carbon dioxide. IPCC Special Report on Carbon Dioxide Capture and Storage (October):319–38. http://www.ipcc.ch/pdf/special-reports/srccs/srccs_chapter7.pdf.
  • Mohd, A., N. Nabillah, N. Harun, N. M. Yunus, N. Dai Viet, M. Vo, T. Azizan, and S. Z. Abidin. 2017. Reforming of glycerol for hydrogen production over ni based catalysts: effect of support type. Energy Sources, Part A: Recovery, Utilization and Environmental Effects. doi:10.1080/15567036.2016.1244580.
  • Mooijer-Van Den, H. M., M., . R. Witteman, and C. J. Peters. 2001. Phase Behaviour of Gas Hydrates of Carbon Dioxide in the Presence of Tetrahydropyran, Cyclobutanone, Cyclohexane and Methylcyclohexane. In Fluid Phase Equilibria. Amsterdam, Netherlands: Elsevier. doi:10.1016/S0378-3812(01)00384-3.
  • Mopsik, F. I. 1967. Dielectric Constant of N-Hexane as a Function of Temperature, Pressure, and Density. Journal of Research of the National Bureau of Standards Section A: Physics and Chemistry. doi:10.6028/jres.071A.035.
  • Na, S. J., S. Sujith, A. Cyriac, B. E. Kim, Y. K. Jina Yoo, S. Kang, J. Han, C. Lee, and B. Y. Lee. 2009. Elucidation of the structure of a highly active catalytic system for co2/epoxide copolymerization: a salen-cobaltate complex of an unusual binding mode. Inorganic Chemistry 48 (21):10455–65. doi:10.1021/ic901584u.
  • Nakano, S., K. H. Chang, A. Shijima, H. Miyamoto, Y. Sato, Y. Noto, J. Y. Ha, and M. Sakamoto. 2014. A usage of CO2 hydrate: convenient method to increase co2 concentration in culturing algae. Bioresource Technology. doi:10.1016/j.biortech.2014.09.019.
  • Nduagu, E., J. Bergerson, and R. Zevenhoven. 2012. Life cycle assessment of co2 sequestration in magnesium silicate rock – a comparative study. Energy Conversion and Management 55 (2012):116-126. doi:10.1016/j.enconman.2011.10.026.
  • NOAA/ESRL. 2017. “NOAA/ESRL.” Scripps Institution of Oceanography (Scrippsco2.Ucsd.Edu/).
  • Oelkers, E. H., and D. R. Cole. 2008. Carbon dioxide sequestration: a solution to a global problem. Elements 4 (5):305–10. doi:10.2113/gselements.4.5.305.
  • Olajire, A. A. 2013. A review of mineral carbonation technology in sequestration of CO2. Journal of Petroleum Science and Engineering 109:364–92. doi:10.1016/j.petrol.2013.03.013.
  • Ota, M., K. Morohashi, Y. Abe, M. Watanabe, R. L. Smith Jr., and H. Inomata. 2005. Replacement of CH4 in the Hydrate by Use of Liquid CO2. Energy Conversion and Management. doi:10.1016/j.enconman.2004.10.002.
  • Pan, Z., Z. Liu, Z. Zhang, L. Shang, and M. Shihui. 2018. Effect of silica sand size and saturation on methane hydrate formation in the presence of SDS. Journal of Natural Gas Science and Engineering. doi:10.1016/j.jngse.2018.06.018.
  • Panwar, D. S., V. K. Saxena, S. Suman, V. Kumar, and A. K. Singh. 2017. Physicochemical study of coal for cbm extraction in raniganj coal field, India. Energy Sources, Part A: Recovery, Utilization and Environmental Effects. doi:10.1080/15567036.2017.1314394.
  • Pellerin, P. 2003. Comparing Extraction by Traditional Solvents with Supercritical Extraction from an Economic and Environmental Standpoint. In 6th International Symposium on Supercritical Fluids. Versailles.
  • Prat, D., A. Wells, J. Hayler, C. Helen Sneddon, R. McElroy, S. Abou-Shehada, and P. J. Dunn. 2016. CHEM21 selection guide of classical- and less classical-solvents. Green Chemistry : an International Journal and Green Chemistry Resource : GC 18 (1):288–96. doi:10.1039/C5GC01008J.
  • Princeton University. 2015. Carbon Mitigation Initiative.
  • Pyo, S.-H., J. H. Park, T.-S. Chang, and R. Hatti-Kaul. 2017. Dimethyl Carbonate as a Green Chemical. Current Opinion in Green and Sustainable Chemistry 5:61–66. doi:10.1016/j.cogsc.2017.03.012.
  • Qin, Y., and X. Wang. 2010. Carbon Dioxide-Based Copolymers: Environmental Benefits of PPC, an Industrially Viable Catalyst. Biotechnology Journal. doi:10.1002/biot.201000134.
  • Quaranta, E., and M. Aresta. 2010. The Chemistry of N- CO2 Bonds: Synthesis of Carbamic Acids and Their Derivatives, Isocyanates, and Ureas. In Carbon Dioxide as Chemical Feedstock, 121–67. New Jersey: Wiley. doi: 10.1002/9783527629916.ch6.
  • Ren, B., F. Gao, Z. Tong, and Y. Yan. 1999. Solvent polarity scale on the fluorescence spectra of a dansyl monomer copolymerizable in aqueous media. Chemical Physics Letters. doi:10.1016/S0009-2614(99)00495-9.
  • Ribeiro, A., L. Martins, E. Alegria, I. Matias, T. Duarte, and A. Pombeiro. 2017a. Catalytic Performance of Fe(II)-Scorpionate Complexes towards Cyclohexane Oxidation in Organic, Ionic Liquid and/or Supercritical CO2 Media: A Comparative Study. Catalysts 7 (8):230. doi:10.3390/catal7080230.
  • Ribeiro, A. P. C., L. M. Martins, E. C. B. A. Alegria, I. A. S. Matias, T. A. G. Duarte, and A. J. L. Pombeiro. 2017b. Catalytic performance of fe(ii)-scorpionate complexes towards cyclohexane oxidation in organic, ionic liquid and/or supercritical co2 media: a comparative study. Molecular Catalysis.
  • Riemer, D., P. Hirapara, and S. Das. 2016. Chemoselective synthesis of carbamates using CO2 as carbon source. Chemsuschem 7 (230):1916–1920 :2455–1920. 2455–1920. doi:10.1002/cssc.v9.15.
  • Romack, T. J., J. M. DeSimone, and T. A. Treat. 1995. Synthesis of tetrafluoroethylene-based, nonaqueous fluoropolymers in supercritical carbon dioxide. Macromolecules 28 (24):8429–31. doi:10.1021/ma00128a065.
  • Sabil, K. M., N. Azmi, and H. Mukhtar. 2011. A review on carbon dioxide hydrate potential in technological applications. Journal of Applied Sciences. doi:10.3923/jas.2011.3534.3540.
  • Saghafi, A. 2010. Potential for ECBM and CO2 storage in mixed gas australian coals. International Journal of Coal Geology 82 (3–4):240–51. doi:10.1016/j.coal.2010.01.002.
  • Sakakura, T., J. C. Choi, Y. Saito, T. Masuda, T. Sako, and T. Oriyama. 1999. Metal-catalyzed dimethyl carbonate synthesis from carbon dioxide and acetals. Journal of Organic Chemistry 64 (12):4506–08. doi:10.1021/jo990155t.
  • Sakakura, T., J. C. Choi, Y. Saito, and T. Sako. 2000. Synthesis of dimethyl carbonate from carbon dioxide: catalysis and mechanism. In Polyhedron 19:573–76. doi:10.1016/S0277-5387(99)00411-8.
  • Salvatore, R. N., F. Chu, A. S. Nagle, E. A. Kapxhiu, R. M. Cross, and K. W. Jung. 2002. Efficient Cs2CO3-promoted solution and solid phase synthesis of carbonates and carbamates in the presence of TBAI. Tetrahedron 58 (17):3329–47. doi:10.1016/S0040-4020(02)00286-7.
  • Salvatore, R. N., S. I. Shin, A. S. Nagle, and K. W. Jung. 2001. Efficient carbamate synthesis via a three-component coupling of an amine, CO2, and alkyl halides in the presence of Cs2CO3 and tetrabutylammonium Iodide. Journal of Organic Chemistry 66 (3):1035–37. doi:10.1021/jo001140u.
  • Saptal, V. B., and B. M. Bhanage. 2017. Bifunctional Ionic Liquids Derived from Biorenewable Sources as Sustainable Catalysts for Fixation of Carbon Dioxide. ChemSusChem 10 (6):1145–51. doi:10.1002/cssc.201601228.
  • Scripps Institution of Oceanography. 2018. “The Keeling Curve.” UC San Diego. https://scripps.ucsd.edu/programs/keelingcurve/.
  • Sebastian, J., and D. Srinivas. 2013. Influence of method of preparation of solid, double-metal cyanide complexes on their catalytic activity for synthesis of hyperbranched polymers. Applied Catalysis A: General 464–465:51–60. doi:10.1016/j.apcata.2013.05.024.
  • Selvarajah, K., N. H. H. Phuc, B. Abdullah, F. Alenazey, and D. V. N. Vo. 2016. Syngas production from methane dry reforming over Ni/Al2O3 Catalyst. Research on Chemical Intermediates 42 (1):269–88. doi:10.1007/s11164-015-2395-5.
  • Senboku, H., and A. Katayama. 2017. Electrochemical Carboxylation with Carbon Dioxide. Current Opinion in Green and Sustainable Chemistry. doi:10.1016/j.cogsc.2016.10.003.
  • Senboku, H., K. Nagakura, T. Fukuhara, and S. Hara. 2015. Three-component coupling reaction of benzylic halides, carbon dioxide, and n,n-dimethylformamide by using paired electrolysis: sacrificial anode-free efficient electrochemical carboxylation of benzylic halides. Tetrahedron 71 (23):3850–56. doi:10.1016/j.tet.2015.04.020.
  • Singh, A., P. S. Nigam, and J. D. Murphy. 2011. Mechanism and challenges in commercialisation of algal biofuels. Bioresource Technology 102 (1):26–34. doi:10.1016/j.biortech.2010.06.057.
  • Styring, P., D. Jansen, H. de Coninck, H. Reith, and K. Armstrong. 2011. Carbon Capture and Utilisation in the Green Economy. Birmingham, UK: Centre for Low Carbon Futures.
  • Sun, D.-L., J.-H. Ye, Y.-X. Fang, and Z.-S. Chao. 2016. Green Synthesis of N,N′-dialkylureas from co2 and amines using metal salts of oxalates as catalysts. Industrial and Engineering Chemistry Research 55:1. doi:10.1021/acs.iecr.5b02936.
  • Sutradhar, M., A. P. C. Ribeiro, M. F. C. G. Da Silva, A. M. F. Palavra, and A. J. L. Pombeiro. 2017. Application of molybdenum complexes for the oxidation of cyclohexane in acetonitrile, ionic liquid and supercritical co2 media, a comparative study. Molecular Catalysis. doi:10.1016/j.mcat.2017.10.026.
  • Sweatman, R. E., M. E. Parker, and S. L. Crookshank. 2009. “Industry experience with co2 -enhanced oil recovery technology.” 2009 SPE International Conference on CO2 Captrue, Storage and Utilization, San Diego, California, November: 1–15. doi:10.2118/126446-MS.
  • Taherimehr, M., and P. P. Pescarmona. 2014. Green polycarbonates prepared by the copolymerization of CO2 with epoxides. Journal of Applied Polymer Science. doi:10.1002/app.41141.
  • Tamura, M., K. Ito, M. Honda, Y. Nakagawa, H. Sugimoto, and K. Tomishige. 2016. Direct Copolymerization of CO2 and Diols. Scientific Reports 6. doi:10.1038/srep24038.
  • Tan, X. B., M. K. Lam, Y. Uemura, J. W. Lim, C. Y. Wong, and K. T. Lee. 2018. Cultivation of microalgae for biodiesel production: a review on upstream and downstream processing. Chinese Journal of Chemical Engineering. doi:10.1016/j.cjche.2017.08.010.
  • Tateno, H., Y. Matsumura, K. Nakabayashi, H. Senboku, and M. Atobe. 2015. Development of a novel electrochemical carboxylation system using a microreactor. RSC Advances 5 (119):98721–23. doi:10.1039/C5RA19289G.
  • Tommasi, I., and F. Sorrentino. 2006. Synthesis of 1,3-Dialkylimidazolium-2-carboxylates by direct carboxylation of 1,3-dialkylimidazolium chlorides with CO2. Tetrahedron Letters 47 (36):6453–56. doi:10.1016/j.tetlet.2006.06.106.
  • Tommasi, I., and F. Sorrentino. 2009. 1,3-Dialkylimidazolium-2-carboxylates as versatile N-heterocyclic carbene- co2 adducts employed in the synthesis of carboxylates and α-alkylidene cyclic carbonates. Tetrahedron Letters 50 (1):104–07. doi:10.1016/j.tetlet.2008.10.107.
  • Trott, G., P. K. Saini, and C. K. Williams. 2016. Catalysts for CO2/epoxide ring-opening copolymerization. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 374 (2061):20150085. doi:10.1098/rsta.2015.0085.
  • Ugwu, C. U., H. Aoyagi, and H. Uchiyama. 2008. Photobioreactors for mass cultivation of algae. Bioresource Technology. doi:10.1016/j.biortech.2007.01.046.
  • Vaessen, R. J. C., F. Ham, and G. J. Witkamp. 2006. Eutectic freeze crystallization using CO2 clathrates. Annals of the New York Academy of Sciences. doi:10.1111/j.1749-6632.2000.tb06803.x.
  • Vega, F., M. Cano, M. Gallego, S. Camino, J. A. Camino, and B. Navarrete. 2017. Evaluation of MEA 5 M performance at different co2 concentrations of flue gas tested at a CO2 capture lab-scale plant. Energy Procedia 114 (114):6222–28. doi:10.1016/j.egypro.2017.03.1760.
  • Veluswamy, H. P., A. Kumar, Y. Seo, J. D. Lee, and P. Linga. 2018. A review of solidified natural gas (sng) technology for gas storage via clathrate hydrates. Applied Energy. doi:10.1016/j.apenergy.2018.02.059.
  • Vert, M., Y. Doi, K.-H. Hellwich, M. Hess, P. Hodge, P. Kubisa, M. Rinaudo, and S. François.2009.Compendium of Polymer Terminology and Nomenclature (IUPAC Recommendations 2008 - Purple Book). Pure and Applied Chemistry, UK. Vol. 84. doi: 10.1039/9781847559425.
  • Vessally, E., R. Mohammadi, A. Hosseinian, L. Edjlali, and M. Babazadeh. 2018. Three component coupling of amines, alkyl halides and carbon dioxide: an environmentally benign access to carbamate esters (urethanes). Journal of CO2 Utilization. doi:10.1016/j.jcou.2018.01.015.
  • Viebahn, P., J. Nitsch, M. Fischedick, A. Esken, D. Schüwer, N. Supersberger, U. Zuberbühler, and O. Edenhofer. 2007. Comparison of carbon capture and storage with renewable energy technologies regarding structural, economic, and ecological aspects in germany. International Journal of Greenhouse Gas Control 1 (2007):121-133. doi:10.1016/S1750-5836(07)00024-2.
  • von der Niklas, A., and A. Bardow. 2014. Life cycle assessment of polyols for polyurethane production using co2 as feedstock: insights from an industrial case study. Green Chemistry 16 (6):3272. doi:10.1039/c4gc00513a.
  • Wang, B., L. Yanqun, W. Nan, and C. Q. Lan. 2008. CO2 bio-mitigation using microalgae. Applied Microbiology and Biotechnology 79 (5):707–18. doi:10.1007/s00253-008-1518-y.
  • Wang, H., Z. Xin, and L. Yuehui. 2017. Synthesis of Ureas from CO2. Topics in Current Chemistry 375(2):1–26. Springer International Publishing. doi: 10.1007/s41061-017-0137-4.
  • Wang, J., H. Zhang, Y. Miao, L. Qiao, X. Wang, and F. Wang. 2016a. Waterborne Polyurethanes from CO2 based polyols with comprehensive hydrolysis/oxidation resistance. Green Chemistry 18(2):524–30. Royal Society of Chemistry. doi: 10.1039/C5GC01373A.
  • Wang, J., Y. Wang, L. Zheng, S. Ni, Z. Fan, R. Yao, and K. Chen. 2014. Kinetic study on extraction of red pepper seed oil with supercritical CO2. Chinese Journal of Chemical Engineering 22(1):44–50. Chemical Industry and Engineering Society of China (CIESC) and Chemical Industry Press (CIP). doi: 10.1016/S1004-9541(14)60003-3.
  • Wang, L., W. Liu, J. Hu, Q. Liu, H. Yue, B. Liang, G. Zhang, D. Luo, H. Xie, and C. Li. 2017. Indirect mineral carbonation of titanium-bearing blast furnace slag coupled with recovery of TiO2 and Al2O3. Chinese Journal of Chemical Engineering. doi:10.1016/j.cjche.2017.06.012.
  • Wang, P., S. Liu, and Y. Deng. 2017. Important green chemistry and catalysis: non-phosgene syntheses of isocyanates – thermal cracking way. Chinese Journal of Chemistry. doi:10.1002/cjoc.201600745.
  • Wang, W., Z. Yun, Z. Tang, and X. Gui. 2016b. Solubilities of CO2 in some glycol ethers under high pressure by experimental determination and correlation. Chinese Journal of Chemical Engineering 24(3):373–78. Elsevier B.V.. doi: 10.1016/j.cjche.2015.08.007.
  • Wang, X., J. Zhang, J. Chen, M. Qingxiang, S. Fan, and T. S. Zhao. 2018. Effect of preparation methods on the structure and catalytic performance of fe-Zn/K catalysts for co2 hydrogenation to light olefins. Chinese Journal of Chemical Engineering 26(4):761–67. Elsevier B.V.. doi: 10.1016/j.cjche.2017.10.013.
  • Wang, Y., Y. Qin, X. Wang, and F. Wang. 2015. Trivalent titanium salen complex: thermally robust and highly active catalyst for copolymerization of CO2 and cyclohexene oxide. ACS Catalysis 5 (1):393–96. doi:10.1021/cs501719v.
  • Wu, C., H. Cheng, R. Liu, Q. Wang, Y. Hao, Y. Yu, and F. Zhao. 2010. Synthesis of urea derivatives from amines and co2 in the absence of catalyst and solvent. Green Chemistry 12 (10):1811. doi:10.1039/c0gc00059k.
  • Xiang, X., L. Guo, X. Wu, X. Ma, and Y. Xia. 2012. Urea formation from carbon dioxide and ammonia at atmospheric pressure. Environmental Chemistry Letters 10 (3):295–300. doi:10.1007/s10311-012-0366-2.
  • Xiong, W., C. Qi, Y. Peng, T. Guo, M. Zhang, and H. Jiang. 2015. Base-promoted coupling of carbon dioxide, amines, and diaryliodonium salts: a phosgene- and metal-free route to o-aryl carbamates. Chemistry: a European Journal 21 (41):14314–14318. doi:10.1002/chem.201502689.
  • Xu, J., E. Feng, and J. Song. 2014. Renaissance of aliphatic polycarbonates: new techniques and biomedical applications. Journal of Applied Polymer Science. doi:10.1002/app.39822.
  • Yan, C., B. Lu, X. Wang, J. Zhao, and Q. Cai. 2011. Electrochemical synthesis of dimethyl carbonate from methanol, co2 and propylene oxide in an ionic liquid. Journal of Chemical Technology and Biotechnology 86 (11):1413–17. doi:10.1002/jctb.2647.
  • Yang, L., L. Fu, and G. Li. 2017. Incorporation of Carbon Dioxide into Carbamate Directing Groups: Palladium-Catalyzed meta-C–HOlefination and Acetoxylation of Aniline Derivatives. Advanced Synthesis & Catalysis 359 (13):2235–2240. doi:10.1002/adsc.v359.13
  • Yang, Z., J. Sun, W. Cheng, J. Wang, Q. Li, and S. Zhang. 2014. Biocompatible and recyclable amino acid binary catalyst for efficient chemical fixation of CO2. Catalysis Communications 44:6–9. doi:10.1016/j.catcom.2013.07.025.
  • Yu, K., M. Kerry, I. Curcic, J. Gabriel, and S. C. E. Tsang. 2008. Recent advances in CO2 capture and utilization. ChemSusChem. doi:10.1002/cssc.200800169.
  • Yuan, G., C. Qi, W. Wu, and H. Jiang. 2017. Recent advances in organic synthesis with CO2 as C1 Synthon. Current Opinion in Green and Sustainable Chemistry 3:22–27. doi:10.1016/j.cogsc.2016.11.006.
  • Zhang, L., and Z. Hou. 2017. Transition metal promoted carboxylation of unsaturated substrates with carbon dioxide. Current Opinion in Green and Sustainable Chemistry. doi:10.1016/j.cogsc.2016.11.003.
  • Zhang, R., L. Guo, C. Chen, J. Chen, A. Chen, X. Zhao, X. Liu, Y. Xiu, and Z. Hou. 2015a. The role of mn doping in ceo2 for catalytic synthesis of aliphatic carbamate from CO2. Catalysis Science & Technology 5:2959–72. doi:10.1039/C5CY00166H.
  • Zhang, Y., L. Zhang, Y. Wang, M. Wang, Y. Wang, and S. Ren. 2015b. Dissolution of surfactants in supercritical CO2 with co-solvents. Chemical Engineering Research and Design 94:624–31. doi:10.1016/j.cherd.2014.10.002.
  • Zhang, Z. 2016. Comparisons of various absorbent effects on carbon dioxide capture in membrane gas absorption (MGA) process. Journal of Natural Gas Science and Engineering. doi:10.1016/j.jngse.2016.03.052.
  • Zhang, Z., F. Chen, M. Rezakazemi, W. Zhang, C. Lu, H. Chang, and X. Quan. 2018b. Modeling of a CO2-piperazine-membrane absorption system. Chemical Engineering Research and Design. doi:10.1016/j.cherd.2017.11.024.
  • Zhang, Z., J. Cai, F. Chen, L. Hao, W. Zhang, and W. Qi. 2018a. Progress in enhancement of CO2 absorption by nanofluids: a mini review of mechanisms and current status. Renewable Energy. doi:10.1016/j.renene.2017.11.031.
  • Zhao, S.-F., M. Horne, A. M. Bond, and J. Zhang. 2014. Electrocarboxylation of acetophenone in ionic liquids: the influence of proton availability on product distribution. Green Chemistry : an International Journal and Green Chemistry Resource : GC 16 (4):2242–51. doi:10.1039/C3GC42404A.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.