192
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Combustion, performances, and emissions characteristics of Hermetia illucens larvae oil in a direct injection compression ignition engine

, ORCID Icon & ORCID Icon
Pages 1483-1496 | Received 28 Jul 2018, Accepted 08 Oct 2018, Published online: 16 Nov 2018

References

  • Aksoy, F. 2011. Analyzing the effects of methyl esters produced from raw soybean and waste frying oil on engine performance and NOx emission. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 34 (2):143–51. doi:10.1080/15567030903567717.
  • Alptekin, E., M. Canakci, A. N. Ozsezen, A. Turkcan, and H. Sanli. 2015. Using waste animal fat based biodiesels–Bioethanol–Diesel fuel blends in a DI diesel engine. Fuel 157:245–54. doi:10.1016/j.fuel.2015.04.067.
  • Awad, O. I., O. M. Ali, R. Mamat, A. A. Abdullah, G. Najafi, M. K. Kamarulzaman, I. M. Yusri, and M. M. Noor. 2017. Using fusel oil as a blend in gasoline to improve SI engine efficiencies: A comprehensive review. Renewable and Sustainable Energy Reviews 69 (Supplement C):1232–42. doi:10.1016/j.rser.2016.11.244.
  • Bayrakçeken, H. 2012. An analysis on the effects of crude and refined soybean oil methyl esters on engine performance and emission. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 34 (15):1407–15. doi:10.1080/15567036.2010.485173.
  • Bhaskar, K., G. Nagarajan, and S. Sampath. 2013. Optimization of FOME (fish oil methyl esters) blend and EGR (exhaust gas recirculation) for simultaneous control of NOx and particulate matter emissions in diesel engines. Energy 62:224–34. doi:10.1016/j.energy.2013.09.056.
  • Godiganur, S., C. S. Murthy, and R. P. Reddy. 2010. Performance and emission characteristics of a Kirloskar HA394 diesel engine operated on fish oil methyl esters. Renewable Energy 35 (2):355–59. doi:10.1016/j.renene.2009.07.007.
  • Kirubakaran, M., and V. Arul Mozhi Selvan. 2018. A comprehensive review of low cost biodiesel production from waste chicken fat. Renewable and Sustainable Energy Reviews 82:390–401. doi:10.1016/j.rser.2017.09.039.
  • Kleinová, A., I. Vailing, J. Lábaj, J. Mikulec, and J. Cvengroš. 2011. Vegetable oils and animal fats as alternative fuels for diesel engines with dual fuel operation. Fuel Processing Technology 92 (10):1980–86. doi:10.1016/j.fuproc.2011.05.018.
  • Li, Q., L. Zheng, H. Cai, E. Garza, Z. Yu, and S. Zhou. 2011a. From organic waste to biodiesel: Black soldier fly, Hermetia illucens, makes it feasible. Fuel 90 (4):1545–48. doi:10.1016/j.fuel.2010.11.016.
  • Li, Q., L. Zheng, N. Qiu, H. Cai, J. K. Tomberlin, and Z. Yu. 2011b. Bioconversion of dairy manure by black soldier fly (Diptera: Stratiomyidae) for biodiesel and sugar production. Waste Management 31 (6):1316–20. doi:10.1016/j.wasman.2011.01.005.
  • Li, Y., Y. Chen, G. Wu, C.-F. F. Lee, and J. Liu. 2018a. Experimental comparison of acetone-n-butanol-ethanol (ABE) and isopropanol-n-butanol-ethanol (IBE) as fuel candidate in spark-ignition engine. Applied Thermal Engineering 133:179–87. doi:10.1016/j.applthermaleng.2017.12.132.
  • Li, Y., Y. Chen, G. Wu, and J. Liu. 2018b. Experimental evaluation of water-containing isopropanol-n-butanol-ethanol and gasoline blend as a fuel candidate in spark-ignition engine. Applied Energy 219:42–52. doi:10.1016/j.apenergy.2018.03.051.
  • Lin, C.-Y., and R.-J. Li. 2009. Engine performance and emission characteristics of marine fish-oil biodiesel produced from the discarded parts of marine fish. Fuel Processing Technology 90 (7):883–88. doi:10.1016/j.fuproc.2009.04.009.
  • Mikulski, M., K. Duda, and S. Wierzbicki. 2016. Performance and emissions of a CRDI diesel engine fuelled with swine lard methyl esters–Diesel mixture. Fuel 164:206–19. doi:10.1016/j.fuel.2015.09.083.
  • Misra, R. D., and M. S. Murthy. 2010. Straight vegetable oils usage in a compression ignition engine—A review. Renewable and Sustainable Energy Reviews 14 (9):3005–13. doi:10.1016/j.rser.2010.06.010.
  • Muralidharan, K., D. Vasudevan, and K. N. Sheeba. 2011. Performance, emission and combustion characteristics of biodiesel fuelled variable compression ratio engine. Energy 36 (8):5385–93. doi:10.1016/j.energy.2011.06.050.
  • Nguyen, H. C., S.-H. Liang, S.-S. Chen, C.-H. Su, J.-H. Lin, and C.-C. Chien. 2018a. Enzymatic production of biodiesel from insect fat using methyl acetate as an acyl acceptor: Optimization by using response surface methodology. Energy Conversion and Management 158:168–75. doi:10.1016/j.enconman.2017.12.068.
  • Nguyen, H. C., S.-H. Liang, S.-Y. Li, C.-H. Su, C.-C. Chien, Y.-J. Chen, and D. T. M. Huong. 2018b. Direct transesterification of black soldier fly larvae (Hermetia illucens) for biodiesel production. Journal of the Taiwan Institute of Chemical Engineers 85:165–69. doi:10.1016/j.jtice.2018.01.035.
  • Othman, M. F., A. Adam, G. Najafi, and R. Mamat. 2017. Green fuel as alternative fuel for diesel engine: A review. Renewable and Sustainable Energy Reviews 80:694–709. doi:10.1016/j.rser.2017.05.140.
  • Ozsezen, A. N. 2012. Using preheated crude sunflower oil as a fuel in a diesel engine. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 34 (6):508–18. doi:10.1080/15567030903530608.
  • Paz, A. S. P., N. S. Carrejo, and C. H. G. Rodríguez. 2015. Effects of larval density and feeding rates on the bioconversion of vegetable waste using black soldier fly larvae Hermetia illucens (L.),(Diptera: Stratiomyidae). Waste and Biomass Valorization 6 (6):1059–65. doi:10.1007/s12649-015-9418-8.
  • Pereira, R. G., O. E. P. Tulcan, C. E. Fellows, V. de Jesus Lameira, O. L. G. Quelhas, M. E. de Aguiar, and D. M. Do Espirito Santo Filho. 2012. Sustainability and mitigation of greenhouse gases using ethyl beef tallow biodiesel in energy generation. Journal of Cleaner Production 29:269–76. doi:10.1016/j.jclepro.2012.01.007.
  • Pushparaj, T., S. Ramabalan, and V. Arul Mozhi Selvan. 2015. Performance evaluation and exhaust emission of a diesel engine fueled with CNSL biodiesel. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 37 (18):2013–19. doi:10.1080/15567036.2011.643343.
  • Satyanarayana, M., and C. Muraleedharan. 2011. Investigations on performance and emission characteristics of vegetable oil biodiesels as fuels in a single cylinder direct injection diesel engine. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 34 (2):177–86. doi:10.1080/15567030903586014.
  • Sealey, W. M., T. G. Gaylord, F. T. Barrows, J. K. Tomberlin, M. A. McGuire, C. Ross, and S. St‐Hilaire. 2011. Sensory analysis of rainbow trout, Oncorhynchus mykiss, fed enriched black soldier fly prepupae, Hermetia illucens. Journal of the World Aquaculture Society 42 (1):34–45. doi:10.1111/j.1749-7345.2010.00441.x.
  • Selvam, D. J. P., and K. Vadivel. 2013. An experimental investigation on performance, emission, and combustion characteristics of a diesel engine fueled with methyl esters of waste pork lard and diesel blends. International Journal of Green Energy 10 (9):908–23. doi:10.1080/15435075.2012.727366.
  • Suhaimi, H., A. Adam, A. G. Mrwan, Z. Abdullah, M. F. Othman, M. K. Kamaruzzaman, and F. Y. Hagos. 2018. Analysis of combustion characteristics, engine performances and emissions of long-chain alcohol-diesel fuel blends. Fuel 220:682–91. doi:10.1016/j.fuel.2018.02.019.
  • Varuvel, E. G., N. Mrad, M. Tazerout, and F. Aloui. 2012. Assessment of liquid fuel (bio-oil) production from waste fish fat and utilization in diesel engine. Applied Energy 100:249–57. doi:10.1016/j.apenergy.2012.05.035.
  • Zheng, L., Q. Li, J. Zhang, and Z. Yu. 2012. Double the biodiesel yield: Rearing black soldier fly larvae, Hermetia illucens, on solid residual fraction of restaurant waste after grease extraction for biodiesel production. Renewable Energy 41:75–79. doi:10.1016/j.renene.2011.10.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.