618
Views
25
CrossRef citations to date
0
Altmetric
Research Article

Optimization and kinetic studies on biodiesel production from microalgae (Euglena sanguinea) using calcium methoxide as catalyst

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1497-1507 | Received 10 Dec 2017, Accepted 09 Nov 2018, Published online: 22 Nov 2018

References

  • Acién, F. G., E. Molina, A. Reis, G. Torzillo, G. C. Zittelli, C. Sepúlveda, and J. Masojídek. 2017. Photobioreactors for the production of microalgae. In Microalgae-based biofuels and bioproducts, ed. C. Gonzalez-Fernandez and R. Muñoz, 1–44. 1st ed. Cambridge, UK: Woodhead Publishing: Woodhead Publishing Series in Energy.
  • Basha, S. A., K. R. Gopal, and S. Jebaraj. 2009. A review on biodiesel production, combustion, emissions and performance. Renewable and Sustainable Energy Reviews 6:1628–34. doi:10.1016/j.rser.2008.09.031.
  • Chai, M., Q. Tu, M. Lu, and Y. J. Yang. 2014. Esterification pretreatment of free fatty acid in biodiesel production, from laboratory to industry. Fuel Processing Technology 125:106–13. doi:10.1016/j.fuproc.2014.03.025.
  • Chumuang, N., and V. Punsuvon. 2017a. Response surface methodology for biodiesel production using calcium methoxide catalyst assisted with tetrahydrofuran as cosolvent. Journal of Chemistry 2017:1–9. doi:10.1155/2017/4190818.
  • Chumuang, N., and V. Punsuvon. 2017b. Application of calcium methoxide as solid base catalyst for biodiesel production from waste cooking oil. Key Engineering Materials 723:594–98. doi:10.4028/www.scientific.net/KEM.723.594.
  • Deshmane, V. G., and Y. G. Adewuyi. 2013. Synthesis and kinetics of biodiesel formation via calcium methoxide base catalyzed transesterification reaction in the absence and presence of ultrasound. Fuel 107:474–82. doi:10.1016/j.fuel.2012.12.080.
  • Dossin, T. F., M. F. Reyniers, R. J. Berger, and G. B. Marin. 2006a. Simulation of heterogeneously MgO-catalyzed transesterification for fine-chemical and biodiesel industrial production. Applied Catalysis B: Environmental 67:136–48. doi:10.1016/j.apcatb.2006.04.008.
  • Dossin, T. F., M. F. Reyniers, and G. B. Marin. 2006b. Kinetics of heterogeneously MgO catalyzed transesterification. Applied Catalysis B: Environmental 61:35–45. doi:10.1016/j.apcatb.2005.04.005.
  • Gryglewicz, S. 1999. Rapeseed oil methyl esters preparation using heterogeneous catalysts. Bioresource Technology 70:249–53. doi:10.1016/S0960-8524(99)00042-5.
  • Hattori, H., M. Shima, and H. Kabashima. 2000. Alcoholysis of ester and epoxide catalyzed by solid bases. Studies in Surface Science and Catalysis 130:3507–12.
  • Huang, G. H., F. Chen, D. Wei, X. W. Zhang, and G. Chen. 2010. Biodiesel production by microalgal biotechnology. Applied Energy 87:38–46. doi:10.1016/j.apenergy.2009.06.016.
  • Islam, A., Y. H. Taufiq-Yap, C. H. Chu, P. Ravindra, and E. S. Chan. 2013. Transesterification of palm oil using KF and NaNO3 catalysts supported on spherical millimetric γ-Al2O3. Renewable Energy 59:23–29. doi:10.1016/j.renene.2013.01.051.
  • Jesus, S. S., J. M. Neto, and R. M. Filho. 2017. Hydrodynamics and mass transfer in bubble column, conventional airlift, stirred airlift and stirred tank bioreactors, using viscous fluid: A comparative study. Biochemical Engineering Journal 118:70–81. doi:10.1016/j.bej.2016.11.019.
  • Kaur, M., R. Malhotra, and A. Ali. 2018. Tungsten supported Ti/SiO2 nanoflowers as reusable heterogeneous catalyst for biodiesel production. Renewable Energy 116:109–19. doi:10.1016/j.renene.2017.09.065.
  • Kings, A. J., R. E. Raj, L. R. M. Miriam, and M. A. Visvanathan. 2017. Cultivation, extraction and optimization of biodiesel production from potential microalgae Euglena sanguinea using eco-friendly natural catalyst. Energy Conversion and Management 141:224–35. doi:10.1016/j.enconman.2016.08.018.
  • Knothe, G. 2009. Improving biodiesel fuel properties by modifying fatty ester composition. Energy and Environment Science 7:759–66. doi:10.1039/b903941d.
  • Kouzu, M., J. Hidaka, K. Wakabayashi, and M. Tsunomori. 2010. Solid base catalysis of calcium glyceroxide for a reaction to convert vegetable oil into its methyl esters. Applied Catalysis A: General 390:11–18. doi:10.1016/j.apcata.2010.09.029.
  • Kouzu, M., T. Kasuno, M. Tajika, S. Yamanaka, and J. Hidaka. 2008. Active phase of calcium oxide used as solid base catalyst for transesterification of soybean oil with refluxing methanol. Applied Catalysis A: General 334 (1–2):357–65. doi:10.1016/j.apcata.2007.10.023.
  • Lam, M. K., and T. L. Keat. 2012. Potential of using organic fertilizer to cultivate Chlorella vulgaris for biodiesel production. Applied Energy 94:303–08. doi:10.1016/j.apenergy.2012.01.075.
  • Liu, X., X. Piao, Y. Wang, and S. Zhu. 2008b. Calcium ethoxide as a solid base catalyst for the transesterification of soybean oil to biodiesel. Energy and Fuels 22:1313–17. doi:10.1021/ef700518h.
  • Liu, X., X. Piao, Y. Wang, S. Zhu, and H. He. 2008a. Calcium methoxide as a solid base catalyst for the transesterification of soybean oil to biodiesel with methanol. Fuel 87:1076–82. doi:10.1016/j.fuel.2007.05.059.
  • Martyanov, I. N., and A. Sayari. 2008. Comparative study of triglyceride transesterification in the presence of catalytic amounts of sodium, magnesium, and calcium methoxides. Applied Catalysis A: General 339:45–52. doi:10.1016/j.apcata.2008.01.007.
  • Milano, J., H. C. Ong, H. H. Masjuki, W. T. Chong, M. K. Lam, P. K. Loh, and V. Vellayan. 2016. Microalgae biofuels as an alternative to fossil fuel for power generation. Renewable and Sustainable Energy Reviews 58:180–97. doi:10.1016/j.rser.2015.12.150.
  • Monari, C., S. Righi, and S. I. Olsen. 2016. Greenhouse gas emissions and energy balance of biodiesel production from microalgae cultivated in photobioreactors in Denmark: A life-cycle modeling. Journal of Cleaner Production 112 (5):4084–92. doi:10.1016/j.jclepro.2015.08.112.
  • Nautiyal, P., K. A. Subramanian, and M. G. Dastidar. 2014. Kinetic and thermodynamic studies on biodiesel production from Spirulina platensis algae biomass using single stage extraction-transesterification process. Fuel 135:228–34. doi:10.1016/j.fuel.2014.06.063.
  • Shah, P., A. V. Ramaswamy, K. Lazar, and V. Ramaswamy. 2004. Synthesis and characterization of tin oxide-modified mesoporous SBA-15 molecular sieves and catalytic activity in trans-esterification reaction. Applied Catalysis A: General 273:239–48. doi:10.1016/j.apcata.2004.06.039.
  • Sharma, Y. C., and V. Singh. 2017. Microalgal biodiesel: A possible solution for India’s energy security. Renewable and Sustainable Energy Reviews 67:72–88. doi:10.1016/j.rser.2016.08.031.
  • Shuba, E. S., and D. Kifle. 2018. Microalgae to biofuels: ‘Promising’ alternative and renewable energy, review. Renewable and Sustainable Energy Reviews 81 (1):743–55. doi:10.1016/j.rser.2017.08.042.
  • Suganya, T., M. Varman, H. H. Masjuki, and S. Renganathan. 2016. Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: A biorefinery approach. Renewable and Sustainable Energy Reviews 55:909–41. doi:10.1016/j.rser.2015.11.026.
  • Teo, S. H., A. Islam, F. L. Ng, and Y. H. Taufiq-Yap. 2015b. Biodiesel synthesis from photoautotrophic cultivated oleoginous microalgae using a sand dollar catalyst. RSC Advances 5:47140–52. doi:10.1039/C5RA05801E.
  • Teo, S. H., A. Islam, T. Yusaf, and Y. H. Taufiq-Yap. 2014. Transesterification of Nannochloropsis oculata microalga’s oil to biodiesel using calcium methoxide catalyst. Energy 78:63–71. doi:10.1016/j.energy.2014.07.045.
  • Teo, S. H., Y. H. Taufiq-Yap, U. Rashid, and A. Islam. 2015a. Hydrothermal effect on synthesis, characterization and catalytic properties of calcium methoxide for biodiesel production from crude. Jatropha Curcas. RSC Advances 5:4266–76. doi:10.1039/C4RA11936C.
  • Van-Gerpen, J., B. Shanks, R. Pruszko, D. Clements, and G. Knothe. 2004. Biodiesel production technology, NREL/SR-510-36244. Golden, CO: National Renewable Energy Laboratory.
  • Yadav, A. K., M. E. Khan, A. Pal, and B. Singh. 2016. Ultrasonic-assisted optimization of biodiesel production from Karabi oil using heterogeneous catalyst. Biofuels 9 (1):101–12. doi:10.1080/17597269.2016.1259522.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.