812
Views
30
CrossRef citations to date
0
Altmetric
Articles

Techno-economic study of off-grid hybrid photovoltaic/battery and photovoltaic/battery/fuel cell power systems in Kunming, China

Pages 1588-1604 | Received 24 Apr 2018, Accepted 14 Oct 2018, Published online: 19 Nov 2018

References

  • Ali, I., G. M. Shafiullah, and T. Urmee. 2018. A preliminary feasibility of roof-mounted solar PV systems in the Maldives. Renewable and Sustainable Energy Reviews 83:18–32. doi:10.1016/j.rser.2017.10.019.
  • Al-Sharafi, A., A. Z. Sahin, T. Ayar, and B. S. Yilbas. 2017. Techno-economic analysis and optimization of solar and wind energy systems for power generation and hydrogen production in Saudi Arabia. Renewable and Sustainable Energy Reviews 69:33–49. doi:10.1016/j.rser.2016.11.157.
  • Amutha, W. M., and V. Rajini. 2015. Techno-economic evaluation of various hybrid power systems for rural telecom. Renewable and Sustainable Energy Reviews 43:553–61. doi:10.1016/j.rser.2014.10.103.
  • Anoune, K., M. Bouya, A. Astito, and A. B. Abdellah. 2018. Sizing methods and optimization techniques for PV-wind based hybrid renewable energy system: A review. Renewable and Sustainable Energy Reviews 93:652–73. doi:10.1016/j.rser.2018.05.032.
  • Ansong, M., L. D. Mensah, and M. S. Adaramola. 2017. Techno-economic analysis of a hybrid system to power a mine in an off-grid area in Ghana. Sustainable Energy Technologies and Assessments 23:48–56. doi:10.1016/j.seta.2017.09.001.
  • Aziz, A. S. 2017. Techno-economic analysis using different types of hybrid energy generation for desert safari camps in UAE. Turkish Journal of Electrical Engineering and Computer Sciences 25:2122–35. doi:10.3906/elk-1602-159.
  • Baneshi, M., and F. Hadianfard. 2016. Techno-economic feasibility of hybrid diesel/PV/wind/battery electricity generation systems for non-residential large electricity consumers under southern Iran climate conditions. Energy Conversion and Management 127:233–44. doi:10.1016/j.enconman.2016.09.008.
  • Beccali, M., S. Brunone, M. Cellura, and V. Franzitta. 2008. Energy, economic and environmental analysis on RET-hydrogen systems in residential buildings. Renewable Energy 33:366–82. doi:10.1016/j.renene.2007.03.013.
  • Bhandari, B., S. H. Ahn, and T. B. Ahn. 2016. Optimization of hybrid renewable energy power system for remote installations: Case studies for mountain and island. International Journal of Precision Engineering and Manufacturing 17 (6):815–22. doi:10.1007/s12541-016-0100-2.
  • Chen, P. J., and F. C. Wang. 2018. Design optimization for the hybrid power system of a green building. International Journal of Hydrogen Energy 43:2381–93. doi:10.1016/j.ijhydene.2017.12.020.
  • CS6K-270| 275 × 280 P. 2018. https://www.canadiansolar.com/fileadmin/user_upload/downloads/datasheets/cn/new/Canadian_Solar-Datasheet_CS6K-P_v5.56_CN.pdf.
  • Dalton, G. J., D. A. Lockington, and T. E. Baldock. 2009. Feasibility analysis of renewable energy supply options for a grid-connected large hotel. Renewable Energy 34 (4):955–64. doi:10.1016/j.renene.2008.08.012.
  • Das, H. S., C. W. Tan, A. H. M. Yatim, and K. Y. Lau. 2017. Feasibility analysis of hybrid photovoltaic/battery/fuel cell energy system for an indigenous residence in East Malaysia. Renewable and Sustainable Energy Reviews 76:1332–47. doi:10.1016/j.rser.2017.01.174.
  • Dursun, B. 2012. Determination of the optimum hybrid renewable power generating systems for Kavakli campus of Kirklareli University, Turkey. Renewable and Sustainable Energy Reviews 16 (8):6183–90. doi:10.1016/j.rser.2012.07.017.
  • Galvez, G. H., J. R. D. Portela, A. N. Rodríguez, O. L. Danguillecourt, L. I. Cortés, A. J. Ugás, O. S. Martínez, and P. J. Sebastian. 2014. Selection of hybrid systems with hydrogen storage based on multiple criteria: Application to autonomous systems and connected to the electrical grid. International Journal of Energy Research 38 (6):702–13. doi:10.1002/er.v38.6.
  • Garni, H. Z. A., A. Awasthi, and M. A. M. Ramli. 2018. Optimal design and analysis of grid-connected photovoltaic under different tracking systems using HOMER. Energy Conversion and Management 155:42–57. doi:10.1016/j.enconman.2017.10.090.
  • Gökçek, M. 2018. Integration of hybrid power (wind-photovoltaic-diesel-battery) and seawater reverse osmosis systems for small-scale desalination applications. Desalination 435:210–20. doi:10.1016/j.desal.2017.07.006.
  • Gökçek, M., and C. Kale. 2018. Techno-economical evaluation of a hydrogen refuelling station powered by Wind-PV hybrid power system: A case study for İzmir-Çeşme. International Journal of Hydrogen Energy 43:10615–25. doi:10.1016/j.ijhydene.2018.01.082.
  • Halabi, L. M., and S. Mekhilef. 2018. Flexible hybrid renewable energy system design for a typical remote village located in tropical climate. Journal of Cleaner Production 177:908–24. doi:10.1016/j.jclepro.2017.12.248.
  • Haratian, M., P. Tabibi, M. Sadeghi, B. Vaseghi, and A. Poustdouz. 2018. A renewable energy solution for stand-alone power generation: A case study of KhshU Site-Iran. Renewable Energy 125:926–35. doi:10.1016/j.renene.2018.02.078.
  • He, L., S. Y. Zhang, Y. Z. Chen, L. X. Ren, and J. Li. 2018. Techno-economic potential of a renewable energy-based microgrid system for a sustainable large-scale residential community in Beijing, China. Renewable and Sustainable Energy Reviews 93:631–41. doi:10.1016/j.rser.2018.05.053.
  • Hosseinalizadeh, R., G. H. Shakouri, M. S. Amalnick, and P. Taghipour. 2016. Economic sizing of a hybrid (PV–WT–FC) renewable energy system (HRES) for stand-alone usages by an optimization-simulation model: Case study of Iran. Renewable and Sustainable Energy Reviews 54:139–50. doi:10.1016/j.rser.2015.09.046.
  • Isa, N. M., H. S. Das, C. W. Tan, A. H. M. Yatim, and K. Y. Lau. 2016. A techno-economic assessment of a combined heat and power photovoltaic/fuel cell/battery energy system in Malaysia hospital. Energy 112:75–90. doi:10.1016/j.energy.2016.06.056.
  • Islam, M. S., R. Akhter, and M. A. Rahman. 2018. A thorough investigation on hybrid application of biomass gasifier and PV resources to meet energy needs for a northern rural off-grid region of Bangladesh: A potential solution to replicate in rural off-grid areas or not? Energy 145:338–55. doi:10.1016/j.energy.2017.12.125.
  • Jacob, A. S., R. Banerjee, and P. C. Ghosh. 2018. Sizing of hybrid energy storage system for a PV based microgrid through design space approach. Applied Energy 212:640–53. doi:10.1016/j.apenergy.2017.12.040.
  • Kalinci, Y., A. Hepbasli, and I. Dincer. 2015. Techno-economic analysis of a stand-alone hybrid renewable energy system with hydrogen production and storage options. International Journal of Hydrogen Energy 40:7652–64. doi:10.1016/j.ijhydene.2014.10.147.
  • Karakoulidis, K., K. Mavridis, D. V. Bandekas, P. Adoniadis, C. Potolias, and N. Vordos. 2011. Techno-economic analysis of a stand-alone hybrid photovoltaic-diesel-battery-fuel cell power system. Renewable Energy 36 (8):2238–44. doi:10.1016/j.renene.2010.12.003.
  • Karmaker, A. K., M. R. Ahmed, M. A. Hossain, and M. M. Sikder. 2018. Feasibility assessment & design of hybrid renewable energy based electric vehicle charging station in Bangladesh. Sustainable Cities and Society 39:189–202. doi:10.1016/j.scs.2018.02.035.
  • Khare, V., S. Nema, and P. Baredar. 2016. Optimization of hydrogen based hybrid renewable energy system using HOMER, BB-BC and GAMBIT. International Journal of Hydrogen Energy 41 (38):16743–51. doi:10.1016/j.ijhydene.2016.06.228.
  • Kunming Maps 2018. https://www.chinadiscovery.com/kunming-tours/maps.html.
  • Mehrpooya, M., M. Mohammadi, and E. Ahmadi. 2018. Techno-economic-environmental study of hybrid power supply system: A case study in Iran. Sustainable Energy Technologies and Assessments 25:1–10. doi:10.1016/j.seta.2017.10.007.
  • Meteonorm Software. 2017. http://www.meteonorm.com/.
  • Nelson, D. B., M. H. Nehrir, and C. Wang. 2006. Unit sizing and cost analysis of stand-alone hybrid wind/PV/fuel cell power generation systems. Renewable Energy 31 (10):1641–56. doi:10.1016/j.renene.2005.08.031.
  • Pu, S., and W. X. Lin. 2000. Correlations to estimate monthly total solar radiation on horizontal surfaces at Kunming, China. Energy Conversion and Management 41 (4):367–74. doi:10.1016/S0196-8904(99)00114-4.
  • PVSYST Software. 2017. http://www.pvsyst.com/.
  • Qolipour, M., A. Mostafaeipour, and O. M. Tousi. 2017. Techno-economic feasibility of a photovoltaic-wind power plant construction for electric and hydrogen production: A case study. Renewable and Sustainable Energy Reviews 78:113–23. doi:10.1016/j.rser.2017.04.088.
  • Shakya, B. D., L. Aye, and P. Musgrave. 2005. Technical feasibility and financial analysis of hybrid wind–Photovoltaic system with hydrogen storage for Cooma. International Journal of Hydrogen Energy 30 (1):9–20. doi:10.1016/j.ijhydene.2004.03.013.
  • Silva, S. B., M. A. G. D. Oliveira, and M. M. Severino. 2010. Economic evaluation and optimization of a photovoltaic-fuel cell-batteries hybrid system for use in the Brazilian Amazon. Energy Policy 38 (11):6713–23. doi:10.1016/j.enpol.2010.06.041.
  • Silva, S. B., M. M. Severino, and M. A. G. D. Oliveira. 2013. A stand-alone hybrid photovoltaic, fuel cell and battery system: A case study of Tocantins, Brazil. Renew. Energy 57 (3):384–89.
  • Singh, S. S., and E. Fernandez. 2018. Modeling, size optimization and sensitivity analysis of a remote hybrid renewable energy system. Energy 143:719–31. doi:10.1016/j.energy.2017.11.053.
  • Song, X., W. F. Gao, T. Liu, W. X. Lin, M. Li, and C. X. Lu. 2013. The operational thermal performance of a simple passive solar house in winter: A case study in Kunming, China. International Journal of Green Energy 10 (6):647–60. doi:10.1080/15435075.2012.726672.
  • Stojkovic, S. M., and V. V. Bakic. 2016. Techno-economic analysis of stand-alone photovoltaic/wind/battery/hydrogen systems for very small-scale applications. Thermal Science 20:S261–S273. doi:10.2298/TSCI150308195S.
  • Surface meteorology and solar energy 2017. http://eosweb.larc.nasa.gov/sse.
  • Wang, Y., M. Li, R. H. E. Hassanien, X. Ma, and G. L. Li. 2018. Grid-Connected semitransparent building-integrated photovoltaic system: The comprehensive case study of the 120 kWp Plant in Kunming, China. International Journal of Photoenergy 1–13. doi:10.1155/2018/6510487.
  • Zhu, J., X. Xia, H. Che, J. Wang, J. Zhang, and Y. Duan. 2016. Study of aerosol optical properties at Kunming in southwest China and long-range transport of biomass burning aerosols from North Burma. Atmospheric Research 169:237–47. doi:10.1016/j.atmosres.2015.10.012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.