168
Views
4
CrossRef citations to date
0
Altmetric
Articles

Enhanced endoglucanase production by soil inhabiting Streptomyces sp. strain NAA9 using lignocellulosic biomass

&
Pages 1630-1639 | Received 31 May 2018, Accepted 19 Oct 2018, Published online: 21 Nov 2018

References

  • Abdullah, R., W. Zawar, M. Nadeem, M. Iqtedar, S. Naz, Q. Syed, and A. Kaleem. 2015. Process optimisation for the biosynthesis of cellulase by Bacillus PC-BC6 and its mutant derivative Bacillus N3 using submerged fermentation. Natural Product Research 29:1133–38. doi:10.1080/14786419.2014.981186.
  • Amaeze, N. J., I. N. Okoliegbe, and M. E. Francis. 2015. Cellulase production by Aspergillus niger and Saccharomyces cerevisiae using fruit waste as substrate. International Journal of Applied Microbiology and Biotechnology 3:36–44.
  • Azizi, M., J. Hemmat, S. M. Seifati, I. Torktaz, and S. Karimi. 2015. Characterization of a thermostable endoglucanase produced by Isoptericola variabilis sp. IDAH9. Brazilian Journal of Microbiology : [Publication of the Brazilian Society for Microbiology] 46:1225–34. doi:10.1590/S1517-838246420140846.
  • Barta, Z., P. Sassner, G. Zacchi, and K. Reczey. 2008. Techno-economic aspects of on-site cellulase production. Hungarian Journal of Industrial Chemistry 36:5–9.
  • Behera, B. C., B. K. Sethi, R. R. Mishra, S. K. Dutta, and H. N. Thatoi. 2016. Microbial cellulases - diversity & biotechnology with reference to mangrove environment: A review. Journal of Genetic Engineering and Biotechnology 15:97–210.
  • Bharti, A. K., A. Kumar, A. Kumar, and D. Dutt. 2017. Exploitation of Parthenium hysterophorus biomass as low-cost substrate for cellulase and xylanase production under solid-state fermentation using Talaromyces stipitatus MTCC 12687. Journal of Radiation Research and Applied Sciences 1–10. doi:10.1016/j.jrras.2018.01.003.
  • Book, A. J., G. R. Lewin, B. R. McDonald, T. E. Takasuka, D. T. Doering, A. S. Adams, J. A. V. Blodgett, J. Clardy, K. F. Raffa, B. G. Fox, et al. 2014. Cellulolytic Streptomyces strains associated with herbivorous insects share a phylogenetically linked capacity to degrade lignocellulose. Applied and Environmental Microbiology 80:4692–701. doi:10.1128/AEM.01133-14.
  • Boon, P. I. 1989. Relationships between actinomycete populations and organic matter degradation in Lake Mulwala, southeastern Australia. River Research and Applications 4:409–18. doi:10.1002/rrr.3450040408.
  • Damaso, M. C. T., S. C. Terzi, A. X. Farias, A. C. P. de Oliveira, M. E. Fraga, and S. Couri. 2012. Selection of cellulolytic fungi isolated from diverse substrates. Brazilian Archives of Biology and Technology 55:513–20. doi:10.1590/S1516-89132012000400005.
  • E Oliviera, R. L., C. B. A. Borba, S. D. Junior, P. M. Albuquerque, G. M. de Souza Lima, N. B. de Gusmao, E. V. de Andrade, and L. A. de Oliveira Da Silva. 2016. Production and characterization of endoglucanase secreted by Streptomyces capoamus isolated from Caatinga. African Journal of Biotechnology 15:2394–401. doi:10.5897/AJB2015.14610.
  • El-Naggar, N. E. A., N. A. M. Abdelwahed, W. I. A. Saber, and A. A. Mohamed. 2014. Bioprocessing of some agro-industrial residues for endoglucanase production by the new subsp.; Streptomyces albogriseolus subsp. cellulolyticus strain NEAE-J. Brazilian Journal of Microbiology : [Publication of the Brazilian Society for Microbiology] 45:743–56.
  • El-Sersy, N. A., H. Adb-Elnaby, G. M. Abou-Elela, H. A. H. Ibrahim, and N. M. K. El-Touhky. 2010. Optimization, economization and characterization of cellulase produced by marine. Streptomyces Ruber African Journal of Biotechnology 9:6355–64.
  • Fatokun, E. N., U. U. Nwodo, and A. I. Okoh. 2016. Classical optimization of cellulase and xylanase production by a marine Streptomyces species. Applied Sciences 6:1–14. doi:10.3390/app6100286.
  • Ghose, T. K. 1987. Measurements of cellulase activities. Pure and Applied Chemistry. Chimie Pure Et Appliquee 59:257–68. doi:10.1351/pac198759020257.
  • Gupta, R., P. Gigras, H. Mohapatra, V. K. Goswami, and B. Chauhan. 2003. Microbial α-amylases: A biotechnological perspective. Process Biochemistry (Barking, London, England) 38:1599–616. doi:10.1016/S0032-9592(03)00053-0.
  • Karim, A., M. A. Nawaz, A. Aman, and S. A. U. Qader. 2015. Hyper production of cellulose degrading endo-(1,4)-β-D-glucanase from Bacillus licheniformis KIBGE-IB2. Journal of Radiation Research and Applied Sciences 8:160–65. doi:10.1016/j.jrras.2014.06.004.
  • Kim, O. S., Y. J. Cho, K. Lee, S. H. Yoon, M. Kim, H. Na, S. C. Park, Y. S. Jeon, J. H. Lee, H. Yi, et al. 2012. Introducing EzTaxon-e: A prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. International Journal of Systematic and Evolutionary Microbiology 62:716–21. doi:10.1099/ijs.0.038075-0.
  • Kumar, S., G. Stecher, and K. Tamura. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33:1870–74. doi:10.1093/molbev/msw054.
  • Lane, D. J. 1991. 16S/23S rRNA sequencing. In Nucleic acid techniques in bacterial systematics, ed. E. Stackbrandt and M. Goodfellow, 115–76. Chichester: Wiley.
  • Li, S., X. Yang, S. Yang, M. Zhu, and X. Wang. 2012. Technology prospecting on enzymes: Application, marketing and engineering. Computational and Structural Biotechnology Journal 2:1–11.
  • Liang, Y., J. Yesuf, S. Schmitt, K. Bender, and J. Bozzola. 2009. Study of cellulases from a newly isolated thermophilic and cellulolytic Brevibacillus sp. strain JXL. Journal of Industrial Microbiology & Biotechnology 36:961–70. doi:10.1007/s10295-009-0575-2.
  • Lugani, Y., R. Singla, and B. S. Sooch. 2015. Optimization of cellulase production by newly isolated Bacillus sp. Y3. Journal of Bioprocessing and Biotechniques 5:1–6.
  • Macedo, E. P., C. L. O. Cerqueira, D. A. J. Souza, A. S. R. Bispo, R. R. R. Coelho, and R. P. Nascimento. 2013. Production of cellulose degrading enzymes on sisal and other agro-industrial residues using new Brazilian actinobacteria strain Streptomyces sp. SLBA-08. Brazilian Journal of Chemical Engineering 30:729–35. doi:10.1590/S0104-66322013000400005.
  • Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry 31:426–28. doi:10.1021/ac60147a030.
  • Pirzadah, T., S. Garg, J. Singh, A. Vyas, M. Kumar, N. Gaur, M. Bala, R. Rehman, A. Varma, V. Kumar, et al. 2014. Characterization of actinomycetes and Trichoderma spp. for cellulase production utilizing crude substrates by response surface methodology. SpringerPlus 3:1–22. doi:10.1186/2193-1801-3-1.
  • Prasad, P., T. Singh, and S. Bedi. 2013. Characterization of the cellulolytic enzyme produced by Streptomyces griseorubens (accession no. AB184139) isolated from Indian soil. Journal of King Saud University Science 25:245–50. doi:10.1016/j.jksus.2013.03.003.
  • Reffas, F. Z. I., A. Missouri, Z. Nourine, A. Tifrit, K. L. Daouadji, S. Tayeb, and B. Abbouni. 2016. Optimization of cellulase production by bacterial strains, isolated from the soils of the North West of Algeria. Der Pharmacia Lettre 8:42–48.
  • Sadhu, S., and T. K. Maiti. 2013. Cellulase production by bacteria: A review. British Microbiology Research Journal 3:235–58. doi:10.9734/BMRJ/2013/2367.
  • Saini, A., N. K. Aggarwal, and A. Yadav. 2016. Cellulolytic potential of actinomycetes isolated from different habitats. Biosciences and Bioengineering 4:88–94.
  • Saini, A., N. K. Aggarwal, and A. Yadav. 2017. Cost-effective cellulase production using Parthenium hysterophorus biomass as an unconventional lingocellulolytic substrate. 3Biotech 7:1–11.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: A laboratory manual. 2nd ed. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory.
  • Sukumaran, R. K., R. R. Singhania, and A. Pandey. 2005. Microbial cellulases- production, applications and challenges. Journal of Scientific & Industrial Research 64:832–44.
  • Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins. 1997. The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25:4876–82.
  • Ventorino, V., E. Ionata, L. Birolo, S. Montella, L. Marcolongo, A. de Chiaro, F. Espresso, V. Faraco, and O. Pepe. 2016. Lignocellulose-adapted endo-cellulase producing Streptomyces strains for bioconversion of cellulose-based materials. Frontiers in Microbiology 7:1–15. doi:10.3389/fmicb.2016.00001.
  • Vyas, A., D. Vyas, and K. M. Vyas. 2005. Production and optimization of cellulases on pretreated groundnut shell by Aspergillus terreus AV49. Journal of Scientific & Industrial Research 64:281–86.
  • Xia, X., and Z. Xie. 2001. DAMBE: Software package for data analysis in molecular biology and evolution. The Journal of Heredity 92:371–73.
  • Yassein, M. A. M., A. A. M. Jiman-Fatani, and H. Z. Asfour. 2014. Production, purification and characterization of cellulase from Streptomyces sp. African Journal of Microbiology Research 8:348–54. doi:10.5897/AJMR2013.6500.
  • Zhang, D., Y. Luo, S. Chu, Y. Zhi, B. Wang, and P. Zhou. 2016. Biological pretreatment of rice straw with Streptomyces griseorubens JSD-1 and its optimized production of cellulase and xylanase for improved enzymatic saccharification efficiency. Preparative Biochemistry & Biotechnology 46:575–85. doi:10.1080/10826068.2015.1084932.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.