392
Views
22
CrossRef citations to date
0
Altmetric
Articles

Optimization and modeling of biodiesel production using fluorite as a heterogeneous catalyst

ORCID Icon, ORCID Icon, & ORCID Icon
Pages 1862-1878 | Received 07 Aug 2018, Accepted 09 Nov 2018, Published online: 26 Nov 2018

References

  • Abu-Jrai, A. M., F. Jamil, A. H. Al-Muhtaseb, M. Baawain, and L. Al-Haj. 2017. Valorization of waste Date pits biomass for biodiesel production in presence of green carbon catalyst. Energy Conversion and Management 135:236–43. doi:10.1016/j.enconman.2016.12.083.
  • Ali, C. H., A. H. Asif, T. Iqbal, A. S. Qureshi, M. A. Kazmi, S. Yasin, M. Danish, and M. Bo-Zhong. 2018. Improved transesterification of waste cooking oil into biodiesel using calcined goat bone as a catalyst. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 40 (9):1076–83. doi:10.1080/15567036.2018.1469691.
  • Ali, R. M., M. Mona, A. E. Latif, and H. A. Farag. 2015. Preparation and characterization of CaSO4-SiO2-CaO/SO42- composite for biodiesel production. American Journal of Applied Chemistry 3:38–45. doi:10.11648/j.ajac.s.2015030301.16.
  • Anitha, A. 2012. Transesterification of used cooking oils catalyzed by CsTPA/SBA15 catalyst system in biodiesel production. International Journal of Engineering and Technology 4 (1):34–37. doi:10.7763/IJET.2012.V4.314.
  • Anjana, P. A., S. Niju, K. M. M. S. Begum, N. Anantharaman, R. Anand, and D. Babu. 2016. Studies on biodiesel production from Pongamia oil using heterogeneous catalyst and its effect on diesel engine performance and emission characteristics. Biofuels 7 (4):377-387. ISSN: 1759-7269 (Print). 1759–7277.
  • Aquliliriana, C., . M., N., . M. Ernee, and R. Irmawati. 2015. Preparation and characterization of modified calcium oxide from natural sources and their application in the transesterification of palm oil. International Journal of Scientific & Technology Research 4 (11):168–75.
  • Boey, P.-L., S. Ganesan, G. P. Maniam, M. Khairuddean, and J. Efendi. 2013. A new heterogeneous acid catalyst for esterification: Optimization using response surface methodology. Energy Conversion and Management 65:392–96. doi:10.1016/j.enconman.2012.08.002.
  • Boey, P.-L., G. P. Maniam, and S. A. Hamid. 2009. Biodiesel production via transesterification of palm oil using waste mud crab (Scylla serrata) shell as a heterogeneous catalyst. Bioresource Technology 100:6362–68. doi:10.1016/j.biortech.2009.07.036.
  • Carrero, A., G. Vicente, R. Rodríguez, M. Linares, and G. L. Del Peso. 2011. Hierarchical zeolites as catalysts for biodiesel production from Nannochloropsis microalga oil. Catalysis Today 167:148–53. doi:10.1016/j.cattod.2010.11.058.
  • Deepalakshmi, S., A. Sivalingam, M. Thirumarimurugan, P. Sivakumar, and V. Ashokkumar. 2015. Optimization of biodiesel synthesis from calophylluminophyllum. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 37 (23):2601–08. doi:10.1080/15567036.2015.1007403.
  • Di Serio, M., M. Cozzolino, R. Tesser, P. Patrono, F. Pinzari, B. Bonelli, and E. Santacesaria. 2007. Vanadyl phosphate catalysts in biodiesel production. Applied Catalysis A: General 320:1–7. doi:10.1016/j.apcata.2006.11.025.
  • Dilek VARIS, L. I., K. C. Tokay, C. I. F. T. C. I. Aysegul, T. DOGUl, and D. O. G. U. Gulsen. 2009. Methanol dehydration reaction to produce clean diesel alternative dimethyl ether over mesoporous alumina silicate-based catalysts. Turkish Journal of Chemistry 33:355–66. doi:10.3906/kim-0809-31.
  • El-Gendy, N. S., S. F. Deriase, and A. Hamdy. 2014. The optimization of biodiesel production from waste frying corn oil using snails shells as a catalyst. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 36 (6):623–37. doi:10.1080/15567036.2013.822440.
  • Farobie, O., N. Hasanah, and Y. Matsumura. 2015. Artificial neural network modeling to predict biodiesel production in supercritical methanol and ethanol using spiral reactor. Procedia Environmental Sciences 28:214–23. doi:10.1016/j.proenv.2015.07.028.
  • Ghazali, N. H. M., J. Gimbun, and S. Nurdin. 2014. Transesterification of waste cooking oil using chemically treated catalyst. Journal of Applied Sciences 14:1425–29. doi:10.3923/jas.2014.1425.1429.
  • Gimbun, J., S. Ali, C. C. S. CharanKanwal, L. A. Shah, N. H. M. Ghazali, C. K. Cheng, and S. Nurdin. 2012. Biodiesel production from rubber seed oil using a limestone-based catalyst. Advances in Materials Physics and Chemistry 2:138–41. doi:10.1016/j.proeng.2013.02.003.
  • Girish, N., S. P. Niju, K. M. M. S. Begum, and N. Anantharaman. 2013. Utilization of a cost-effective solid catalyst derived from natural white bivalve clamshell for transesterification of waste frying oil. Fuel 111:653–58. doi:10.1016/j.fuel.2013.03.069.
  • Heydarzadeh, J. K., G. Amini, M. A. Khalizadeh, M. Pazouki, A. A. Ghoreyshi, M. Rabeai, and G. D. Najafpour. 2010. Esterification of free fatty acids by heterogeneous ɣ-alumina-zirconia catalysts for biodiesel synthesis. World Applied Sciences Journal 9 (11):1306–12.
  • Hussain, A., S. Ali, I. Ahmed, J. Gimbun, and M. H. Albeirutty. 2016. Microwave reinforced transesterification of rubber seed oil using waste cement clinker catalyst. Current Nanoscience 12:1–10. doi:10.2174/1573413712666160314200607.
  • Jai-In, S., P. Intarapong, S. Langthanarat, and A. Luengnaruemitchai. 2014. Biodiesel production from palm oil using potassium hydroxide loaded on ZrO2 catalyst in a batch reactor. Journal Science 41 (1):128–37.
  • Karthikeyan, M., S. Renganathan, and G. Baskar. 2017. Production of biodiesel from waste cooking oil using MgMoO4-supported TiO2 as a heterogeneous catalyst. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 39 (21):2053–59. doi:10.1080/15567036.2017.1371815.
  • Khemthong, P., C. Luadthong, W. Nualpaeng, P. Changsuwan, P. Tongprem, N. Viriya-Empikul, and K. Faungnawakij. 2012. Industrial eggshell wastes as the heterogeneous catalysts for microwave-assisted biodiesel production. Catalysis Today 190:112–16. doi:10.1016/j.cattod.2011.12.024.
  • Li, Y., Y. Jiang, and J. Gao. 2015. Heterogeneous Catalyst Derived from Waste Shells for Biodiesel Production. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 37 (6):598–605. doi:10.1080/15567036.2011.588674.
  • Liu, M., S. Niu, L. Chunmei, and S. Cheng. 2015. An optimization study on transesterification catalyzed by the activated carbide slag through the response surface methodology. Energy Conversion and Management 92:498–506. doi:10.1016/j.enconman.2014.12.074.
  • Liu, X., H. Huayang, Y. Wang, and S. Zhu. 2007. Transesterification of soybean oil to biodiesel using SrO as a solid base catalyst. Catalysis Communications 8:1107–11. doi:10.1016/j.catcom.2006.10.026.
  • Macala, G. S., A. W. Robertson, C. L. Johnson, Z. B. Day, R. S. Lewis, M. G. White, A. V. Iretskii, and P. C. Ford. 2008. Transesterification catalysts from iron doped hydrotalcite-like precursors: Solid bases for biodiesel production. Catalysis Letters 122:205–09. doi:10.1007/s10562-008-9480-y.
  • Mahesh, S. E., K. M. Anand Ramanathan, M. S. Begum, and A. Narayanan. 2015. Biodiesel production from waste cooking oil using KBr impregnated CaO as catalyst. Energy Conversion and Management 91:442–50. doi:10.1016/j.enconman.2014.12.031.
  • Maneerung, T., S. Kawi, and C.-H. Wang. 2015. Biomass gasification bottom ash as a source of CaO catalyst for biodiesel production via transesterification of palm oil. Energy Conversion and Management 92:234–43. doi:10.1016/j.enconman.2014.12.057.
  • Monica, C. G., I. Albuquerque, J. Jimenez-Urbistondo, J. M. Santamara-Gonzalez, R. Merida-Robles, E. Moreno-Tost, A. Rodrguez-Castellon, D. C. S. Jimenez-Lopez, C. L. Azevedo, J. Cavalcante, et al. 2008. CaO supported on mesoporous silicas as basic catalysts for transesterification reactions. Applied Catalysis A: General 334:35–43. doi:10.1016/j.apcata.2007.09.028.
  • Niju, S., K. M. M. S. Begum, and N. Anantharaman. 2014. Preparation of biodiesel from waste frying oil using a green and renewable solid catalyst derived from eggshell. Environmental Progress & Sustainable Energy 34 (1). doi: 10.1002/ep.
  • Noiroj, K., P. Intarapong, A. Luengnaruemitchai, and S. Jai-In. 2009. A comparative study of KOH/Al2O3 and KOH/NaY catalysts for biodiesel production via transesterification from palm oil. Renewable Energy 34:1145–50. doi:10.1016/j.renene.2008.06.015.
  • Ramadhas, A. S., S. Jayaraj, and C. Muraleedharan. 2005. Biodiesel production from high FFA rubber seed oil. Fuel 84:335–40. doi:10.1016/j.fuel.2004.09.016.
  • Semwal, S., A. K. Arora, R. P. Badoni, and D. K. Tuli. 2011. Biodiesel production using heterogeneous catalysts. Bioresource Technology 102:2151–61. doi:10.1016/j.biortech.2010.10.080.
  • Shi, Z., Y. Jiang, L. Zhou, and J. Gao. 2017. Eggshell-derived catalyst for biodiesel production in the presence of acetone as co-solvent. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 39 (3):320–25. doi:10.1080/15567036.2012.740549.
  • Shu, Q., B. Yang, H. Yuan, S. Qing, and G. Zhu. 2007. Synthesis of biodiesel from soybean oil and methanol catalyzed by zeolite beta modified with La3+. Catalysis Communications 8:2159–65. doi:10.1016/j.catcom.2007.04.028.
  • Singh Chouhan, A. P., and A. K. Sarma. 2011. Modern heterogeneous catalysts for biodiesel production: A comprehensive review. Renewable and Sustainable Energy Reviews 15:4378–99. doi:10.1016/j.rser.2011.07.112.
  • Solisa, J. L., L. Alejo, and Y. Kiros. 2016. Calcium and tin oxides for heterogeneous transesterification of Babassu oil (Attalea speciosa). Journal of Environmental Chemical Engineering 4:4870–77. doi:10.1016/j.jece.2016.04.006.
  • Sulaiman, S., and N. I. F. Ruslan. 2017. A heterogeneous catalyst from a mixture of coconut waste and eggshells for biodiesel production. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 39 (2):154–59. doi:10.1080/15567036.2016.1205683.
  • Suppes, G. J., M. A. Dasari, E. J. Doskocil, P. J. Mankidy, and M. J. Goff. 2004. Transesterification of soybean oil with zeolite and metal catalysts. Applied Catalysis A: General 257:213–23. doi:10.1016/j.apcata.2003.07.010.
  • WenleiXie, C., H. Qi, and Y. Liu. 2014. Phenyl sulfonic acid functionalized mesoporous SBA-15 silica: A heterogeneous catalyst for removal of free fatty acids in the vegetable oil. Fuel Processing Technology 119:98–104. doi:10.1016/j.fuproc.2013.10.028.
  • Xie, W., X. Huang, and L. Haitao. 2007. Soybean oil methyl esters preparation using NaX zeolites loaded with KOH as a heterogeneous catalyst. Bioresource Technology 98:936–39. doi:10.1016/j.biortech.2006.04.003.
  • Zamberi, M. M., and F. N. Ani. 2016. Biodiesel Production from High FFA Rubber Seed Oil Using Waste Cockles. ARPN Journal of Engineering and Applied Sciences 11 (12):7782–87.
  • Zeng, H.-Y., Z. Feng, X. Deng, and L. Yu-Qin. 2008. Activation of Mg-Al hydrotalcite catalysts for transesterification of rape oil. Fuel 87:3071–76. doi:10.1016/j.fuel.2008.04.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.