248
Views
12
CrossRef citations to date
0
Altmetric
Articles

Optimization and thermo-economic performance analysis of organic Rankine cycles using mixture working fluids driven by solar energy

, &
Pages 1890-1907 | Received 17 Aug 2018, Accepted 09 Nov 2018, Published online: 22 Nov 2018

References

  • Aghahoseini, S., and I. Dincer. 2013. Comparative performances analysis of low temperature Organic Rankine Cycle (ORC) using pure and zeotropic working fluids. Applied Thermal Engineering 54:35–42.
  • Bejan, A., G. Tsatsaronis, and M. Moran. 1996. Thermal design and optimization, 143–56. USA: John Wiley & Sons Inc.
  • Deb, K. 2001. Multi-objective optimization using evolutionary algorithms. Chichester, UK: Wiley.
  • Deethayat, T., A. Asannakham, and T. Kiatsiriroat. 2016. Performance analysis of low temperature organic Rankine cycle with zeotropic refrigerant by Figure of Merit (FOM). Energy 96:96–102. doi:10.1016/j.energy.2015.12.047.
  • Deethayat, T., T. Kiatsiriroat, and C. Thawonngamyingsakul. 2015. Performance analysis of an organic Rankine cycle with internal heat exchanger having zeotropic fluid. Case Studies in Thermal Engineering 96:155–61. doi:10.1016/j.csite.2015.09.003.
  • Feng, Y., T. C. Hung, K. Greg, Y. Zhang, B. Li, and J. Yang. 2015. Thermoeconomic comparison between pure and mixture working fluids of organic Rankine cycles (ORCs) for low temperature waste heat. Energy Conversion Management 106:859–72. doi:10.1016/j.enconman.2015.09.042.
  • Garg, P., P. Kumar, K. Srinivasan, and P. Dutta. 2013. Evaluation of isopentane, R245fa and their mixtures as working fluids for organic Rankine cycles. Applied Thermal Energy 51:292–300. doi:10.1016/j.applthermaleng.2012.08.056.
  • Holland, J. 1992. Adaption in nature and Artificial System: An introductory analysis with application to biology, control and artificial intelligence. Masachusettts: MIT Press.
  • Jingling, L., Z. Jie, S. Chen, and Y. Pu. 2016. Analysis of organic Rankine cycle using zeotropic mixtures as working fluids under different restrictive condition. Energy Conversion and Management 126:704–16. doi:10.1016/j.enconman.2016.08.056.
  • Lecompte, S., B. Ameel, D. Ziviani, M. V. D. Borek, and M. Pepe. 2014. Exergy analysis of mixtures as working fluids in organic Rankine cycles. Energy Conversion Management 85:727–39. doi:10.1016/j.enconman.2014.02.028.
  • Li, Y. R., M. T. Du, C. M. Wu, S., Y. Wu, and C. Liu. 2014. Potential of organic Rankine cycle using zeotropic mixtures as working fluids for waste heat recovery. Energy 77:509–19. doi:10.1016/j.energy.2014.09.035.
  • Li, Z., and J. Bao. 2014. Thermodynamic analysis of organic Rankine cycle using zeotropic mixtures. Applied Energy 130:748–56. doi:10.1016/j.apenergy.2014.03.067.
  • Liu, Q., Y. Duan, and Z. Yang. 2014. Effect of condensation temperature glide on performance of organic Rankine cycle with zeotropic mixture fluids. Applied Energy 115:394–404. doi:10.1016/j.apenergy.2013.11.036.
  • Liu, Q., A. Shen, and Y. Duan. 2015. Parametric optimization and performance analyses of geothermalorganic Rankine cycles using R600a/R601a mixtures as working fluids. Applied Energy 148:410–20. doi:10.1016/j.apenergy.2015.03.093.
  • Mitchell, M. 1998. An introduction to genetic algorithms. Cambridge, Massachusetts London, England: MIT Press.
  • Quoilin, S., M. V. D. Borek, S. Declaye, P. Dewallef, and V. Lemort. 2013. Techno-economic survey of organic Rankine cycle (ORC) systems. Renewable and Sustainable Energy Review 22:168–86. doi:10.1016/j.rser.2013.01.028.
  • Sadeghi, M., A. Nemati, A. Ghavimi, and M. Yari. 2016. Thermodynamic analysis and multi-objective optimization of various ORC configurations using zeotropic mixtures. Energy 109:791–802. doi:10.1016/j.energy.2016.05.022.
  • Shu, G., Y. Gao, H. Tian, H. Wei, and X. Liang. 2014. Study of mixtures based on hydrocarbons used in ORC(Organic Rankine cycle) for engine waste heat recovery. Energy 74:428–428. doi:10.1016/j.energy.2014.07.007.
  • Sun, J., Q. Liu, and Y. Duan. 2018. Effect of evaporator pinch point temperature difference on thermo-economic performance of geothermal organic Rankine cycle systems. Geothermics 75:249–58. doi:10.1016/j.geothermics.2018.06.001.
  • Tchache, B. F., G. Papdakis, G. Lambrinos, and A. Frangoudakis. 2009. Fluid selection for low temperature solar organic Rankine cycle. Applied Thermal Engineering 29:2468 2476.
  • Tiwari, D., A. F. Sherwani, D. Atheaya, and A. Arora. 2017. Energy and exergy analysis of solar driven recuperated organic Rankine cycle using glazed reverse absorber conventional compound parabolic concentrator (GRACCPC) system. Solar Energy 155:1431–42. doi:10.1016/j.solener.2017.08.001.
  • Wang, J. L., L. Zaho, and X. D. Wang. 2010. A comparative study of pure and zeotropic mixtures in low-temperature solar organic Rankine cycle. Applied Energy 87:3366–73. doi:10.1016/j.apenergy.2010.05.016.
  • Wang, M., J. Wang, Y. Zhao, P. Zhao, and Y. Dai. 2013. Thermodyanamic analysis and optimization of solar driven regenerative organic Rankine cycle(ORC) based on flat-plate solar collectors. Applied Thermal Engineering 50:816–25. doi:10.1016/j.applthermaleng.2012.08.013.
  • Wang, X. D., and L. Zhao. 2009. Analysis of zeotropic mixtures used in low-temperature solar Rankine cycle for power generation. Solar Energy 83:605–13. doi:10.1016/j.solener.2008.10.006.
  • Wu, Y., Y. Zhu, and L. Yu. 2016. Thermal and economic performance analysis of zeotropic mixtures for Organic Rankine Cycles. Applied Thermal Engineering 96:57–63. doi:10.1016/j.applthermaleng.2015.11.083.
  • Xi, H., M. J. Li, Y. L. He, and Y. W. Zhang. 2017. Economical and evaluation and optimization of organic Rankine cycle with mixture working fluids using R245fa as flame retardant. Applied Thermal Engineering 113:1056–70. doi:10.1016/j.applthermaleng.2016.11.059.
  • Yue, C., D. Han, W. Pu, and W. He. 2015. Thermal matching performance of geothermal ORC system using zeotropic working fluids. Renewable Energy 80:746–54. doi:10.1016/j.renene.2015.02.063.
  • Zhai, H., Q. An, L. Shi, V. Lemort, and S. Quoilin. 2016. Categorization and analysis of heat sources for organic Rakine cycle systems. Renewable and Sustainable Energy Review 64:790–805. doi:10.1016/j.rser.2016.06.076.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.