153
Views
24
CrossRef citations to date
0
Altmetric
Articles

Utilization possibilities of Albizia amara as a source of biomass energy for bio-oil in pyrolysis process

ORCID Icon & ORCID Icon
Pages 1908-1919 | Received 23 Aug 2018, Accepted 19 Oct 2018, Published online: 22 Nov 2018

References

  • Abnisa, F., W. W. Daud, W. N. W. Husin, and J. N. Sahu. 2011. Utilization possibilities of palm shell as a source of biomass energy in Malaysia by producing bio-oil in pyrolysis process. Biomass and Bioenergy 35 (5):1863–72. doi:10.1016/j.biombioe.2011.01.033.
  • Akhtar, J., and N. S. Amin. 2012. A review on operating parameters for optimum liquid oil yield in biomass pyrolysis. Renewable and Sustainable Energy Reviews 16 (7):5101–09. doi:10.1016/j.rser.2012.05.033.
  • Cao, Q., K. C. Xie, W. R. Bao, and S. G. Shen. 2004. Pyrolytic behavior of waste corn cob. Bioresource Technology 94 (1):83–89. doi:10.1016/j.biortech.2003.10.031.
  • Casoni, A. I., M. Bidegain, M. A. Cubitto, N. Curvetto, and M. A. Volpe. 2015. Pyrolysis of sunflower seed hulls for obtaining bio-oils. Bioresource Technology 177:406–09. doi:10.1016/j.biortech.2014.11.105.
  • Chiaramonti, D., A. Oasmaa, and Y. Solantausta. 2007. Power generation using fast pyrolysis liquids from biomass. Renewable and Sustainable Energy Reviews 11 (6):1056–86. doi:10.1016/j.rser.2005.07.008.
  • Demirbas, A. 2004a. Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. Journal of Analytical and Applied Pyrolysis 72 (2):243–48. doi:10.1016/j.jaap.2004.07.003.
  • Demirbas, A. 2004b. Effect of initial moisture content on the yields of oily products from pyrolysis of biomass. Journal of Analytical and Applied Pyrolysis 71 (2):803–15. doi:10.1016/j.jaap.2003.10.008.
  • Encinar, J. M., J. F. Gonzalez, and J. Gonzalez. 2000. Fixed-bed pyrolysis of Cynara cardunculus L. Product yields and compositions. Fuel Processing Technology 68 (3):209–22. doi:10.1016/S0378-3820(00)00125-9.
  • Fadhil, A. B. 2017. Evaluation of apricot (Prunus armeniaca L.) seed kernel as a potential feedstock for the production of liquid bio-fuels and activated carbons. Energy Conversion and Management 133:307–17. doi:10.1016/j.enconman.2016.12.014.
  • Fadhil, A. B., A. I. Ahmed, and H. A. Salih. 2017a. Production of liquid fuels and activated carbons from fish waste. Fuel 187:435–45. doi:10.1016/j.fuel.2016.09.064.
  • Fadhil, A. B., M. A. Alhayali, and L. I. Saeed. 2017b. Date (Phoenix dactylifera L.) palm stones as a potential new feedstock for liquid bio-fuels production. Fuel 210:165–76. doi:10.1016/j.fuel.2017.08.059.
  • Fokom-Domgue, J., C. Combescure, V. Fokom-Defo, P. M. Tebeu, P. Vassilakos, A. P. Kengne, and P. Petignat. 2015. Performance of alternative strategies for primary cervical cancer screening in sub-Saharan Africa: Systematic review and meta-analysis of diagnostic test accuracy studies. BMJ (Clinical Research Ed.) 351:h3084. doi:10.1136/bmj.h6432.
  • Islam, M. N., M. R. A. Beg, and M. R. Islam. 2005. Pyrolytic oil from fixed bed pyrolysis of municipal solid waste and its characterization. Renewable Energy 30 (3):413–20. doi:10.1016/j.renene.2004.05.002.
  • Islam, M. N., R. Zailani, and F. N. Ani. 1999. Pyrolytic oil from fluidised bed pyrolysis of oil palm shell and its characterisation. Renewable Energy 17 (1):73–84. doi:10.1016/S0960-1481(98)00112-8.
  • Jahirul, M. I., M. G. Rasul, A. A. Chowdhury, and N. Ashwath. 2012. Biofuels production through biomass pyrolysis-a technological review. Energies 5 (12):4952–5001. doi:10.3390/en5124952.
  • Jin, X., X. Chen, C. Shi, M. Li, Y. Guan, C. Y. Yu, T. Yamada, J. E. Sacks, and J. Peng. 2017. Determination of hemicellulose, cellulose and lignin content using visible and near infrared spectroscopy in Miscanthus sinensis. Bioresource Technology 241:603–09. doi:10.1016/j.biortech.2017.05.047.
  • Kim, S. S., J. Kim, Y. H. Park, and Y. K. Park. 2010. Pyrolysis kinetics and decomposition characteristics of pine trees. Bioresource Technology 101 (24):9797–802. doi:10.1016/j.biortech.2010.07.094.
  • Li, L. I. N., and H. Zhang. 2005. Production and characterization of pyrolysis oil from herbaceous biomass (Achnatherum splendens). Energy Sources 27 (4):319–26. doi:10.1080/00908310390424179.
  • Madhu, P., C. N. Kumar, L. Anojkumar, and M. Matheswaran. 2018a. Selection of biomass materials for bio-oil yield: A hybrid multi-criteria decision making approach. Clean Technologies and Environmental Policy 20 (6):1377–84. doi:10.1007/s10098-018-1545-z.
  • Madhu, P., T. S. Livingston, and H. Kanagasabapathy. 2018b. Flash pyrolysis of lemon grass (Cymbopogon flexuosus) for bio-oil production in an electrically heated fluidized bed reactor. Waste and Biomass Valorization 9 (6):1037–46. doi:10.1007/s12649-017-9872-6.
  • Madhu, P., I. N. Manickam, and H. Kanagasabapathy. 2015. Production and upgradation of cotton shell pyrolytic oil for biofuel from flash pyrolysis by fluidized bed reactor. Proceedings of the National Academy of Sciences. India Section A: Physical Sciences 85 (3):457–62.
  • Madhu, P., T. Stephen Livingston, and I. N. Manickam. 2017. Fixed bed pyrolysis of lemongrass (Cymbopogon flexuosus): Bio-oil production and characterization. Energy Sources. Part A: Recovery, Utilization, and Environmental Effects 39 (13):1359–68.
  • Malghani, S., G. Gleixner, and S. E. Trumbore. 2013. Chars produced by slow pyrolysis and hydrothermal carbonization vary in carbon sequestration potential and greenhouse gases emissions. Soil Biology and Biochemistry 62:137–46. doi:10.1016/j.soilbio.2013.03.013.
  • Mullen, C. A., and A. A. Boateng. 2008. Chemical composition of bio-oils produced by fast pyrolysis of two energy crops. Energy & Fuels 22 (3):2104–09. doi:10.1021/ef700776w.
  • Mythili, R., and P. Venkatachalam. 2015. Product yield and characteristics of char. Energy Sources. Part A: Recovery, Utilization, and Environmental Effects 37 (24):2632–38.
  • Onay, O., and O. M. Kockar. 2003. Slow, fast and flash pyrolysis of rapeseed. Renewable Energy 28 (15):2417–33. doi:10.1016/S0960-1481(03)00137-X.
  • Park, H. J., J. I. Dong, J. K. Jeon, Y. K. Park, K. S. Yoo, S. S. Kim, … S. Kim. 2008. Effects of the operating parameters on the production of bio-oil in the fast pyrolysis of Japanese larch. Chemical Engineering Journal 143 (1–3):124–32. doi:10.1016/j.cej.2007.12.031.
  • Park, Y. K., M. L. Yoo, H. W. Lee, S. H. Park, S. C. Jung, S. S. Park, and S. C. Kim. 2012. Effects of operation conditions on pyrolysis characteristics of agricultural residues. Renewable Energy 42:125–30. doi:10.1016/j.renene.2011.08.050.
  • Pütün, A. E., N. Özbay, E. Apaydın Varol, B. B. Uzun, and F. Ateş. 2007. Rapid and slow pyrolysis of pistachio shell: Effect of pyrolysis conditions on the product yields and characterization of the liquid product. International Journal of Energy Research 31 (5):506–14. doi:10.1002/(ISSN)1099-114X.
  • Raheem, A., W. W. Azlina, Y. T. Yap, M. K. Danquah, and R. Harun. 2015. Thermochemical conversion of microalgal biomass for biofuel production. Renewable and Sustainable Energy Reviews 49:990–99. doi:10.1016/j.rser.2015.04.186.
  • Şensöz, S., and D. Angın. 2008. Pyrolysis of safflower (Charthamus tinctorius L.) seed press cake: Part 1. The effects of pyrolysis parameters on the product yields. Bioresource Technology 99 (13):5492–97. doi:10.1016/j.biortech.2007.10.046.
  • Silitonga, A. S., A. E. Atabani, T. M. I. Mahlia, H. H. Masjuki, I. A. Badruddin, and S. Mekhilef. 2011. A review on prospect of Jatropha curcas for biodiesel in Indonesia. Renewable and Sustainable Energy Reviews 15 (8):3733–56. doi:10.1016/j.rser.2011.07.011.
  • Tinwala, F., P. Mohanty, S. Parmar, A. Patel, and K. K. Pant. 2015. Intermediate pyrolysis of agro-industrial biomasses in bench-scale pyrolyser: Product yields and its characterization. Bioresource Technology 188:258–64. doi:10.1016/j.biortech.2015.02.006.
  • Uçar, S., and S. Karagöz. 2009. The slow pyrolysis of pomegranate seeds: The effect of temperature on the product yields and bio-oil properties. Journal of Analytical and Applied Pyrolysis 84 (2):151–56. doi:10.1016/j.jaap.2009.01.005.
  • Worasuwannarak, N., T. Sonobe, and W. Tanthapanichakoon. 2007. Pyrolysis behaviors of rice straw, rice husk, and corncob by TG-MS technique. Journal of Analytical and Applied Pyrolysis 78 (2):265–71. doi:10.1016/j.jaap.2006.08.002.
  • Yang, H., R. Yan, H. Chen, D. H. Lee, and C. Zheng. 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12–13):1781–88. doi:10.1016/j.fuel.2006.12.013.
  • Zhao, C., A. Chen, E. Jiang, and L. Qin. 2017. Pyrolysis of industrial waste lignin: Analysis of product yields and character. Energy Sources. Part A: Recovery, Utilization, and Environmental Effects 39 (5):458–64.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.