448
Views
10
CrossRef citations to date
0
Altmetric
Reviews

Ash deposited in diesel particular filter: a review

, , , , , , , , , , & show all
Pages 2184-2193 | Received 25 Jul 2018, Accepted 16 Nov 2018, Published online: 03 Dec 2018

References

  • Aravelli, K., and A. Heibel. 2007. Improved lifetime pressure drop management for robust cordierite (RC) filters with asymmetric cell technology (ACT). SAE International. doi:10.4271/2007-01-0920
  • Bagi, S., R. Bowker, and R. Andrew. 2016. Understanding chemical composition and phase transitions of ash from field returned DPF units and their correlation with filter operating conditions. SAE International Journal of Fuels and Lubricants 9:239–59. doi:10.4271/2016-01-0898.
  • Bardasz, E. A., S. Cowling, A. Panesar, J. Durham, and T. N. Tadrous. 2005. Effects of lubricant derived chemistries on performance of the catalyzed diesel particulate filters. SAE International. doi:10.4271/2005-01-2168
  • Bensaid, S., and N. Russo. 2011. Low temperature dpf regeneration by delafossite catalysts. Catalysis Today 176:417–23. doi:10.1016/j.cattod.2010.11.020.
  • Bikas, G., and E. Zervas. 2007. Regulated and non-regulated pollutants emitted during the regeneration of a diesel particulate filter. Energy & Fuels 21:1543–47. doi:10.1021/ef070024s.
  • Chen, P. G., U. Ibrahim, and J. M. Wang. 2014. Experimental investigation of diesel and biodiesel post injections during active diesel particulate filter regenerations. Fuel 130:286–95. doi:10.1016/j.fuel.2014.04.046.
  • Choi, B., B. Liu, and J.-W. Jeong. 2009. Effects of hydrothermal aging on SiC-DFP with metal oxide ash and alkali metals. Journal of Industrial and Engineering Chemistry 15:707–15. doi:10.1016/j.jiec.2009.09.050.
  • Choi, S., and H. Seong. 2015. Oxidation characteristics of gasoline direct-injection (GDI) engine soot: Catalytic effects of ash and modified kinetic correlation. Combustion and Flame 162:2371–89. doi:10.1016/j.combustflame.2015.02.004.
  • Fang, J., Z. W. Meng, J. Li, Y. F. Pu, Y. H. Du, J. S. Li, Z. X. Jin, C. Chen, and G. G. Chase. 2017. The influence of ash on soot deposition and regeneration processes in diesel particular filter. Applied Thermal Engineering 124:633–40. doi:10.1016/j.applthermaleng.2017.06.076.
  • Gao, J., C. Ma, S. Xing, L. Sun, and L. Huang. 2018. A review of fundamental factors affecting diesel pm oxidation behaviors. Science China-Technological Sciences 61:330–45. doi:10.1007/s11431-016-9117-x.
  • Guan, B., R. Zhan, H. Lin, and Z. Huang. 2015. Review of the state-of-the-art of exhaust particulate filter technology in internal combustion engines. Journal of Environmental Management 154:225–58. doi:10.1016/j.jenvman.2015.02.027.
  • Gysel, N., G. Karavalakis, T. Durbin, D. Schmitz, and A. Cho. 2014. Emissions and redox activity of biodiesel blends obtained from different feedstocks from a heavy-duty vehicle equipped with DPF/SCR aftertreatment and a heavy-duty vehicle without control aftertreatment. SAE International. doi:10.4271/2014-01-1400
  • Hansen, B. B., A. D. Jensen, and P. A. Jensen. 2013. Performance of diesel particulate filter catalysts in the presence of biodiesel ash species. Fuel 106:234–40. doi:10.1016/j.fuel.2012.11.038.
  • Ibrahim, A. H., P. F. Dunn, and R. M. Brach. 2004. Microparticle detachment from surfaces exposed to turbulent air flow: Effects of flow and particle deposition characteristics. Journal of Aerosol Science 35:805–21. doi:10.1016/j.jaerosci.2004.01.002.
  • Ishizawa, T., H. Yamane, H. Satoh, K. Sekiguchi, M. Arai, N. Yoshimoto, and T. Inoue. 2009. Investigation into ash loading and its relationship to DPF regeneration method. SAE International Journal of Commercial Vehicles 2:164–75. doi:10.4271/2009-01-2882.
  • Jiang, J., J. Gong, W. Liu, T. Chen, and C. Zhong. 2016. Analysis on filtration characteristic of wall-flow filter for ash deposition in cake. Journal of Aerosol Science 95:73–83. doi:10.1016/j.jaerosci.2016.01.009.
  • Jinke, G., H. Ying, C. Hao, L. Yunqing, and W. Gang. 2011. Mathematical model of diesel wall-flow filter for ash deep-bed deposition process. Transactions of the Chinese Society of Agricultural Engineering (In Chinese) 3:137–41.
  • Kagawa, J. 2002. Health effects of diesel exhaust emissions-a mixture of air pollutants of worldwide concern. Toxicology 181:349–53.
  • Kamp, C. J., A. Sappok, Y. Wang, W. Bryk, A. Rubin, and V. Wong. 2014. Direct measurements of soot/ash affinity in the diesel particulate filter by atomic force microscopy and implications for ash accumulation and DPF degradation. SAE International Journal of Fuels and Lubricants 7:307–16. doi:10.4271/2014-01-1486.
  • Kamp, C. J., A. Sappok, and V. Wong. 2012. Soot and ash deposition characteristics at the catalyst-substrate interface and intra-layer interactions in aged diesel particulate filters illustrated using focused ion beam (FIB) milling. SAE International Journal of Fuels and Lubricants 5:696–710. doi:10.4271/2012-01-0836.
  • Kittelson, D. B. 1998. Engines and nanoparticles: A review. Journal of Aerosol Science 29:575–88. doi:10.1016/S0021-8502(97)10037-4.
  • Knecht, W. 2008. Diesel engine development in view of reduced emission standards. Energy 33:264–71. doi:10.1016/j.energy.2007.10.003.
  • Koltsakis, G. C., and A. M. Stamatelos. 1997. Modes of catalytic regeneration in diesel particulate filters. Industrial & Engineering Chemistry Research 36:4155–65. doi:10.1021/ie970095m.
  • Liati, A., and P. Dimopoulos Eggenschwiler. 2010. Characterization of particulate matter deposited in diesel particulate filters: Visual and analytical approach in macro-, micro- and nano-scales. Combustion and Flame 157:1658–70. doi:10.1016/j.combustflame.2010.02.015.
  • Liati, A., P. Dimopoulos Eggenschwiler, E. Müller Gubler, D. Schreiber, and M. Aguirre. 2012a. Investigation of diesel ash particulate matter: A scanning electron microscope and transmission electron microscope study. Atmospheric Environment 49:391–402. doi:10.1016/j.atmosenv.2011.10.035.
  • Liati, A., A. Spiteri, P. D. Eggenschwiler, and N. Vogel-Schaeuble. 2012b. Microscopic investigation of soot and ash particulate matter derived from biofuel and diesel. Implications for the Reactivity of soot.Journal of Nanoparticle Research 14:1224. doi:10.1007/s11051-012-1224-7.
  • Liu, H., K. He, D. He, L. Fu, Y. Zhou, M. P. Walsh, and K. O. Blumberg. 2008. Analysis of the impacts of fuel sulfur on vehicle emissions in China. Fuel 87:3147–54. doi:10.1016/j.fuel.2008.03.019.
  • Liu, Y., C. Su, J. Clerc, A. Harinath, and L. Rogoski. 2015. Experimental and modeling study of ash impact on DPF backpressure and regeneration behaviors. SAE International Journal of Engines 8:1313–21. doi:10.4271/2015-01-1063.
  • Mc Geehan, J. A. 2004. Diesel engines have a future and that future is clean. SAE International. doi:10.4271/2004-01-1956
  • Merkel, G. A., W. A. Cutler, and C. J. Warren. 2001. Thermal durability of wall-flow ceramic diesel particulate filters. SAE International. doi:10.4271/2001-01-0190
  • Naseri, M., S. Chatterjee, M. Castagnola, H. Y. Chen, J. Fedeyko, H. Hess, and J. Li. 2011. Development of SCR on diesel particulate filter system for heavy duty applications. SAE International Journal of Engines 4:1798–809. doi:10.4271/2011-01-1312.
  • Nemoto, S., Y. Kishi, K. Matsuura, M. Miura, S. Togawa, T. Ishikawa, T. Hashimoto, and T. Yamazaki. 2004. Impact of oil-derived ash on continuous regeneration-type diesel particulate filter-JCPA II Oil WG Report. SAE International. doi:10.4271/2004-01-1887
  • Pomeroy, M. J., D. O’Sullivan, S. Hampshire, and M. J. Murtagh. 2012. Degradation resistance of cordierite diesel particulate filters to diesel fuel ash deposits. Jouranlofthe American Ceramicsociety 95:746–53. doi:10.1111/j.1551-2916.2011.04997.x.
  • Sappok, A., I. Govani, C. Kamp, Y. Wang, and V. Wong. 2013. In-situ optical analysis of ash formation and transport in diesel particulate filters during active and passive DPF regeneration processes. SAE International Journal of Fuels and Lubricants 6:336–49. doi:10.4271/2013-01-0519.
  • Sappok, A., Y. Wang, R. Q. Wang, C. Kamp, and V. Wong. 2014. Theoretical and experimental analysis of ash accumulation and mobility in ceramic exhaust particulate filters and potential for improved ash management. SAE International Journal of Fuels and Lubricants 7:511–24. doi:10.4271/2014-01-1517.
  • Sappok, A., and V. W. Wong. 2010a. Ash effects on diesel particulate filter pressure drop sensitivity to soot and implications for regeneration frequency and DPF control. SAE International Journal of Fuels and Lubricants 3:380–96. doi:10.4271/2010-01-0811.
  • Sappok, A., and V. W. Wong. 2010b. Lubricant-derived ash properties and their effects on diesel particulate filter pressure-drop performance. Journal of Engineering for Gas Turbines and Power 133:032805–12. doi:10.1115/1.4001944.
  • Sappok, A. G., and V. W. Wong. 2007. Detailed chemical and physical characterization of ash species in diesel exhaust entering aftertreatment systems. SAE International. doi:10.4271/2007-01-0318
  • Serrano, J. R., C. Guardiola, P. Piqueras, and E. Angiolini. 2014. Analysis of the aftertreatment sizing for pre-turbo DPF and DOC exhaust line configurations. SAE International. doi:10.4271/2014-01-1498
  • Stepien, Z., L. Ziemianski, G. Zak, M. Wojtasik, L. Jeczmionek, and Z. Burnus. 2015. The evaluation of fuel borne catalyst (FBC’s) for dpf regeneration. Fuel 161:278–86. doi:10.1016/j.fuel.2015.08.071.
  • Tan, P. Q., Y. Li, and H. Y. Shen. 2018. Exhaust particle properties from a light duty diesel engine using different ash content lubricating oil. Journal of the Energy Institute 91:55–64. doi:10.1016/j.joei.2016.11.001.
  • Tan, P. Q., and D. Y. Wang. 2018. Effects of sulfur content and ash content in lubricating oil on the aggregate morphology and nanostructure of diesel particulate matter. Energy & Fuels 32:713–24. doi:10.1021/acs.energyfuels.7b03017.
  • Tornehed, P., and U. Olofsson. 2011. Lubricant ash particles in diesel engine exhaust. Literature review and modelling study. Proceedings of the Institution of Mechanical Engineers Part D-Journal of Automobile Engineering 225:1055–66. doi:10.1177/0954407011402754.
  • Viswanathan, S., N. Rakovec, and D. E. Foster. 2012. Microscale study of ash accumulation process in dpf walls using the diesel exhaust filtration analysis (DEFA) system, 537–49. doi:10.1115/icef2012-92104
  • Wang, Y., X. Liang, G. Q. Shu, L. Dong, H. Yu, Y. Wang, and Z. Li. 2016. Effects of lube oil sulfur and ash on size, morphology and element composition of diesel particles. SAE International. doi:10.4271/2016-01-0999
  • Wang, Y., V. Wong, A. Sappok, and S. Munnis. 2013. The sensitivity of dpf performance to the spatial distribution of ash inside DPF inlet channels. SAE International. doi:10.4271/2013-01-1584
  • Wu, Y., S. Zhang, J. Hao, H. Liu, X. Wu, J. Hu, M. P. Walsh, T. J. Wallington, K. M. Zhang, and S. Stevanovic. 2017. On-road vehicle emissions and their control in China: A review and outlook. Science of the Total Environment 574:332–49. doi:10.1016/j.scitotenv.2016.09.040.
  • Yamamoto, K., and K. Yamauchi. 2013. Numerical simulation of continuously regenerating diesel particulate filter. Proceedings of the Combustion Institute 34:3083–90. doi:10.1016/j.proci.2012.06.117.
  • Yamazaki, K., Y. Sakakibara, F. Dong, and H. Shinjoh. 2014. The remote oxidation of soot separated by ash deposits via silver-ceria composite catalysts. Applied Catalysis A: General 476:113–20. doi:10.1016/j.apcata.2014.02.014.
  • Yang, C. Q., Y. M. Wang, and L. G. Wu. 2017b. Influence of ZrO2/Al2O3 ratio in carrier on performance of Pt/ZrO2-Al2O3 catalyst. Rare Metal Materials and Engineering 46:2049–54. doi:10.1016/S1875-5372(17)30177-7.
  • Yang, C. Q., Y. M. Wang, L. G. Wu, and W. Li. 2017a. Preparation and application of the hca catalyst materials. Rare Metal Materials and Engineering 46:2423–27. doi:10.1016/S1875-5372(17)30209-6.
  • Yang, Y., L. Zhijun, J. Penghao, and L. Lei. 2013. Computational Investigation On Ash for Soot Load and Regeneration of Diesel Particular Filter (in Chinese). China Academic Journal Electronic Publishing House. http://www.cnki.net
  • Yu, M. T., D. Luss, and V. Balakotaiah. 2013. Analysis of ignition in a diesel particulate filter. Catalysis Today 216:158–68. doi:10.1016/j.cattod.2013.05.003.
  • Yu, Q. S., J. W. Tan, Y. S. Ge, L. J. Hao, and Z. H. Peng. 2017. Application of diesel particulate filter on in-use on-road vehicles. 8th International Conference on Applied Energy 105:1730–36.
  • Zhang, D., S. Jia, H. Wang, P. Huo, J. Zhang, and J. Tao. 2017. Interactions of sulfur dioxide with coals: Implications for oxy-coal combustion flue gas sequestration in deep coal seams. Energy & Fuels 31:5333–43. doi:10.1021/acs.energyfuels.7b00136.
  • Zhang, D. F., H. H. Wang, Q. Q. Wang, W. Li, W. P. Jiang, P. L. Huo, J. Zhang, L. Zhu, G. Q. Duan, and C. C. Du. 2016b. Interactions of nitric oxide with various rank coals: Implications for oxy-coal combustion flue gas sequestration in deep coal seams with enhanced coalbed methane recovery. Fuel 182:704–12. doi:10.1016/j.fuel.2016.06.018.
  • Zhang, D. F., J. Zhang, P. L. Huo, Q. Q. Wang, H. H. Wang, W. Jiang, J. Tao, and L. Zhu. 2016a. Influences of SO2, NO, and CO2 exposure on pore morphology of various rank coals: Implications for coal-fired flue gas sequestration in deep coal seams. Energy & Fuels 30:5911–21. doi:10.1021/acs.energyfuels.6b00220.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.