393
Views
3
CrossRef citations to date
0
Altmetric
Articles

Influence of torrefaction on properties of activated carbon obtained from physical activation of pyrolysis char

, , , &
Pages 2246-2256 | Received 11 Jul 2018, Accepted 16 Nov 2018, Published online: 10 Dec 2018

References

  • Alvarez, J., G. Lopez, M. Amutio, J. Bilbao, and M. Olazar. 2015. Physical activation of rice husk pyrolysis char for the production of high surface area activated carbons. Industrial & Engineering Chemistry Research 54 (29):7241–50. doi:10.1021/acs.iecr.5b01589.
  • Cai, W., A. Fivga, O. Kaario, and R. Liu. 2017. Effects of torrefaction on the physicochemical characteristics of sawdust and rice husk and their pyrolysis behavior by thermogravimetric analysis and pyrolysis–gas chromatography/mass spectrometry. Energy & Fuels 31 (2):1544–54. doi:10.1021/acs.energyfuels.6b01846.
  • Chen, D., Z. Zheng, K. Fu, Z. Zeng, J. Wang, and M. Lu. 2015a. Torrefaction of biomass stalk and its effect on the yield and quality of pyrolysis products. Fuel 159:27–32. doi:10.1016/j.fuel.2015.06.078.
  • Chen, H., X. Chen, Y. Qin, J. Wei, and H. Liu. 2017. Effect of torrefaction on the properties of rice straw high temperature pyrolysis char: Pore structure, aromaticity and gasification activity. Bioresource Technology 228:241–49. doi:10.1016/j.biortech.2016.12.074.
  • Chen, W., C. Wang, G. Kumar, P. Rousset, and T. Hsieh. 2018. Effect of torrefaction pretreatment on the pyrolysis of rubber wood sawdust analyzed by Py-GC/MS. Bioresource Technology 259:469–73. doi:10.1016/j.biortech.2018.03.033.
  • Chen, W., J. Peng, and X. T. Bi. 2015. A state-of-the-art review of biomass torrefaction, densification and applications. Renewable and Sustainable Energy Reviews 44:847–66. doi:10.1016/j.rser.2014.12.039.
  • Chen, W., S. Liu, T. Juang, C. Tsai, and Y. Zhuang. 2015b. Characterization of solid and liquid products from bamboo torrefaction. Applied Energy 160:829–35. doi:10.1016/j.apenergy.2015.03.022.
  • Choi, G., S. Jung, S. Oh, and J. Kim. 2014. Total utilization of waste tire rubber through pyrolysis to obtain oils and CO2 activation of pyrolysis char. Fuel Processing Technology 123:57–64. doi:10.1016/j.fuproc.2014.02.007.
  • Correia, R., M. Gonçalves, C. Nobre, and B. Mendes. 2017. Impact of torrefaction and low-temperature carbonization on the properties of biomass wastes from Arundo donax L. and Phoenix canariensis. Bioresource Technology 223:210–18. doi:10.1016/j.biortech.2016.10.046.
  • Gao, Z., Y. Zhang, N. Song, and X. Li. 2017. Biomass-derived renewable carbon materials for electrochemical energy storage. Materials Research Letters 5 (2):69–88. doi:10.1080/21663831.2016.1250834.
  • Kate, G. U., and A. S. Chaurasia. 2018. Gasification of rice husk in two-stage gasifier to produce syngas, silica and activated carbon. Energy Sources Part A-Recovery Utilization and Environmental Effects 40 (4):466–71. doi:10.1080/15567036.2017.1423418.
  • Li, D., Y. Liu, H. Li, J. Peng, Y. Tan, Q. Zou, X. Song, M. Du, Z. Yang, Y. Tan, et al. 2015. MicroRNA-1 promotes apoptosis of hepatocarcinoma cells by targeting apoptosis inhibitor-5 (API-5). FEBS Letters 589 (1):68–76. doi:10.1016/j.febslet.2014.11.025.
  • Li, J., G. Bonvicini, L. Tognotti, W. Yang, and W. Blasiak. 2014. High-temperature rapid devolatilization of biomasses with varying degrees of torrefaction. Fuel 122:261–69. doi:10.1016/j.fuel.2014.01.012.
  • Li, M., S. Ma, and X. Zhu. 2016. Preparation of activated carbon from pyrolyzed rice husk by leaching out ash content after CO2 activation. Bioresources 11 (2):3384–96.
  • Li, S., C. Chen, M. Li, and X. Xiao. 2018. Torrefaction of corncob to produce charcoal under nitrogen and carbon dioxide atmospheres. Bioresource Technology 249:348–53. doi:10.1016/j.biortech.2017.10.026.
  • Liang, Y., C. Yang, H. Dong, W. Li, H. Hu, Y. Xiao, M. Zheng, and Y. Liu. 2017. Facile synthesis of highly porous carbon from rice husk. ACS Sustainable Chemistry & Engineering 5 (8):7111–17. doi:10.1021/acssuschemeng.7b01315.
  • Liu, L., Y. Huang, J. Cao, C. Liu, L. Dong, L. Xu, and J. Zha. 2018. Experimental study of biomass gasification with oxygen-enriched air in fluidized bed gasifier. The Science of the Total Environment 626:423–33. doi:10.1016/j.scitotenv.2018.01.016.
  • Mourant, D., Z. Wang, M. He, X. S. Wang, M. Garcia-Perez, K. Ling, and C. Li. 2011. Mallee wood fast pyrolysis: Effects of alkali and alkaline earth metallic species on the yield and composition of bio-oil. Fuel 90 (9):2915–22. doi:10.1016/j.fuel.2011.04.033.
  • Poudel, J., T. Ohm, and S. C. Oh. 2015. A study on torrefaction of food waste. Fuel 140:275–81. doi:10.1016/j.fuel.2014.09.120.
  • Song, X., Y. Zhang, and C. Chang. 2012. Novel method for preparing activated carbons with high specific surface area from rice husk. Industrial & Engineering Chemistry Research 51 (46):15075–81. doi:10.1021/ie3012853.
  • Su, Y., S. Zhang, L. Liu, D. Xu, and Y. Xiong. 2018. Investigation of representative components of flue gas used as torrefaction pretreatment atmosphere and its effects on fast pyrolysis behaviors. Bioresource Technology 267:584–90. doi:10.1016/j.biortech.2018.07.078.
  • Tan, X., S. Liu, Y. Liu, Y. Gu, G. Zeng, X. Hua, X. Wang, S. Liu, and L. Jiang. 2017. Biochar as potential sustainable precursors for activated carbon production: Multiple applications in environmental protection and energy storage. Bioresource Technology 227:359–72. doi:10.1016/j.biortech.2016.12.083.
  • Thines, K. R., E. C. Abdullah, M. Ruthiraan, N. M. Mubarak, and M. Tripathi. 2016. A new route of magnetic biochar based polyaniline composites for supercapacitor electrode materials. Journal of Analytical and Applied Pyrolysis 121:240–57. doi:10.1016/j.jaap.2016.08.004.
  • Vitali, F., S. Parmigiani, M. Vaccari, and C. Collivignarelli. 2013. Agricultural waste as household fuel: Techno-economic assessment of a new rice-husk cookstove for developing countries. Waste Management 33 (12):2762–70. doi:10.1016/j.wasman.2013.08.026.
  • Walker, P. L., Jr. 1996. Production of activated: Useof CO2 versus H2O as activatlng agent. Carbon 34 (10):1297–99. doi:10.1016/0008-6223(96)82800-4.
  • Wang, J., P. Nie, B. Ding, S. Dong, X. Hao, H. Dou, and X. Zhang. 2017a. Biomass derived carbon for energy storage devices. Journal of Materials Chemistry A 5 (6):2411–28. doi:10.1039/c6ta08742f.
  • Wang, S., G. Dai, B. Ru, Y. Zhao, X. Wang, G. Xiao, and Z. Luo. 2017b. Influence of torrefaction on the characteristics and pyrolysis behavior of cellulose. Energy 120:864–71. doi:10.1016/j.energy.2016.11.135.
  • Wang, S., G. Dai, B. Ru, Y. Zhao, X. Wang, J. Zhou, Z. Luo, and K. Cen. 2016. Effects of torrefaction on hemicellulose structural characteristics and pyrolysis behaviors. Bioresource Technology 218:1106–14. doi:10.1016/j.biortech.2016.07.075.
  • Wang, S., G. Dai, H. Yang, and Z. Luo. 2017c. Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review. Progress in Energy and Combustion Science 62:33–86. doi:10.1016/j.pecs.2017.05.004.
  • Wen, J., S. Sun, T. Yuan, F. Xu, and R. Sun. 2014. Understanding the chemical and structural transformations of lignin macromolecule during torrefaction. Applied Energy 121:1–9. doi:10.1016/j.apenergy.2014.02.001.
  • Yahya, M. A., Z. Al-Qodah, and C. W. Z. Ngah. 2015. Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review. Renewable and Sustainable Energy Reviews 46:218–35. doi:10.1016/j.rser.2015.02.051.
  • Zeng, D., Y. Qiu, S. Peng, C. Chen, J. Zeng, S. Zhang, and R. Xiao. 2018. Enhanced hydrogen production performance through controllable redox exsolution within CoFeAlOx spinel oxygen carrier materials. Journal of Materials Chemistry A 6 (24):11306–16. doi:10.1039/C8TA02477D.
  • Zhang, J., H. Fu, X. Lv, J. Tang, and X. Xu. 2011. Removal of Cu(II) from aqueous solution using the rice husk carbons prepared by the physical activation process. Biomass and Bioenergy 35 (1):464–72. doi:10.1016/j.biombioe.2010.09.002.
  • Zhang, S., B. Hu, L. Zhang, and Y. Xiong. 2016b. Effects of torrefaction on yield and quality of pyrolysis char and its application on preparation of activated carbon. Journal of Analytical and Applied Pyrolysis 119:217–23. doi:10.1016/j.jaap.2016.03.002.
  • Zhang, S., H. Zhang, X. Liu, S. Zhu, L. Hu, and Q. Zhang. 2018c. Upgrading of bio-oil from catalytic pyrolysis of pretreated rice husk over Fe-modified ZSM-5 zeolite catalyst. Fuel Processing Technology 175:17–25. doi:10.1016/j.fuproc.2018.03.002.
  • Zhang, S., T. Chen, Y. Xiong, and Q. Dong. 2016a. Effects of wet torrefaction on the physicochemical properties and pyrolysis product properties of rice husk. Energy Conversion and Management. doi:10.1016/j.enconman.2016.10.002.
  • Zhang, S., Y. Su, D. Xu, S. Zhu, H. Zhang, and X. Liu. 2018a. Effects of torrefaction and organic-acid leaching pretreatment on the pyrolysis behavior of rice husk. Energy 149:804–13. doi:10.1016/j.energy.2018.02.110.
  • Zhang, S., Y. Su, D. Xu, S. Zhu, H. Zhang, and X. Liu. 2018b. Assessment of hydrothermal carbonization and coupling washing with torrefaction of bamboo sawdust for biofuels production. Bioresource Technology 258:111–18. doi:10.1016/j.biortech.2018.02.127.
  • Zhang, S., Y. Su, K. Ding, S. Zhu, H. Zhang, X. Liu, and Y. Xiong. 2018d. Effect of inorganic species on torrefaction process and product properties of rice husk. Bioresource Technology 265:450–55. doi:10.1016/j.biortech.2018.06.042.
  • Zhang, S., Y. Su, and Y. Xiong. 2017. Influence of coupling demineralization with the torrefaction pretreatment process on the pyrolysis characteristics and kinetics of rice husk. Energy Sources Part A-Recovery Utilization and Environmental Effects 39 (7):726–32. doi:10.1080/15567036.2016.1260184.
  • Zhang, S., and Y. Xiong. 2016. Washing pretreatment with light bio-oil and its effect on pyrolysis products of bio-oil and biochar. RSC Advances 6 (7):5270–77. doi:10.1039/c5ra22350d.
  • Zhang, W., N. Lin, D. Liu, J. Xu, J. Sha, J. Yin, X. Tan, H. Yang, H. Lu, and H. Lin. 2017a. Direct carbonization of rice husk to prepare porous carbon for supercapacitor applications. Energy 128:618–25. doi:10.1016/j.energy.2017.04.065.
  • Zhang, Y., A. Yao, and K. Song. 2016. Torrefaction of cultivation residue of Auricularia auricula-judae to obtain biochar with enhanced fuel properties. Bioresource Technology 206:211–16. doi:10.1016/j.biortech.2016.01.099.
  • Zheng, A., Z. Zhao, S. Chang, Z. Huang, X. Wang, F. He, and H. Li. 2013. Effect of torrefaction on structure and fast pyrolysis behavior of corncobs. Bioresource Technology 128:370–77. doi:10.1016/j.biortech.2012.10.067.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.