292
Views
9
CrossRef citations to date
0
Altmetric
Articles

Two-step pyrolysis characteristic of cellulose: effects of pyrolysis temperature and residence time

, , &
Pages 2481-2493 | Received 26 Jul 2018, Accepted 22 Nov 2018, Published online: 25 Jan 2019

References

  • Azeez, A. M., D. Meier, and J. Odermatt. 2011. Temperature dependence of fast pyrolysis volatile products from European and African biomasses. Journal of Analytical and Applied Pyrolysis 90 (2):81–92. doi:10.1016/j.jaap.2010.11.005.
  • Baccile, N., G. Laurent, F. Babonneau, F. Fayon, -M.-M. Titirici, and M. Antonietti. 2009. Structural characterization of hydrothermal carbon spheres by advanced solid-state MAS 13C NMR investigations. The Journal of Physical Chemistry C 113 (22):9644–54. doi:10.1021/jp901582x.
  • Baharom, M. Z., M. Z. Nuawi, and G. Priyandoko. 2014. Parameter analysis of electromagnetic braking using fully nested and two way ANOVA. Applied Mechanics & Materials 663:193–97. doi:10.4028/www.scientific.net/AMM.663.193.
  • Bedmutha, R. J., L. Ferrante, C. Briens, F. Berruti, and I. Inculet. 2009. Single and two-stage electrostatic demisters for biomass pyrolysis application. Chemical Engineering and Processing: Process Intensification 48 (6):1112–20. doi:10.1016/j.cep.2009.02.007.
  • Boon, J. J., I. Pastorova, R. Botto, and P. Arisz. 1994. Structural studies on cellulose pyrolysis and cellulose chars by PYMS, PYGCMS, FTIR, NMR and by wet chemical techniques. Biomass and Bioenergy 7 (1–6):25–32. doi:10.1016/0961-9534(94)00044-T.
  • Bridgwater, A., and G. Peacocke. 2000. Fast pyrolysis processes for biomass. Renewable and Sustainable Energy Reviews 4 (1):1–73. doi:10.1016/S1364-0321(99)00007-6.
  • Bridgwater, A. V. 2012. Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy 38:68–94. doi:10.1016/j.biombioe.2011.01.048.
  • Burhenne, L., J. Messmer, T. Aicher, and M. P. Laborie. 2013. The effect of the biomass components lignin, cellulose and hemicellulose on TGA and fixed bed pyrolysis. Journal of Analytical and Applied Pyrolysis 101:177–84. doi:10.1016/j.jaap.2013.01.012.
  • Chen, D., J. Mei, H. Li, Y. Li, M. Lu, T. Ma, and Z. Ma. 2017a. Combined pretreatment with torrefaction and washing using torrefaction liquid products to yield upgraded biomass and pyrolysis products. Bioresource Technology 228:62–68. doi:10.1016/j.biortech.2016.12.088.
  • Chen, D., Y. Li, K. Cen, M. Luo, H. Li, and B. Lu. 2016. Pyrolysis polygeneration of poplar wood: Effect of heating rate and pyrolysis temperature. Bioresource Technology 218:780–88. doi:10.1016/j.biortech.2016.07.049.
  • Chen, W.-H., and P.-C. Kuo. 2011. Isothermal torrefaction kinetics of hemicellulose, cellulose, lignin and xylan using thermogravimetric analysis. Energy 36 (11):6451–60. doi:10.1016/j.energy.2011.09.022.
  • Chen, X., H. Yang, Y. Chen, W. Chen, T. Lei, W. Zhang, and H. Chen. 2017b. Catalytic fast pyrolysis of biomass to produce furfural using heterogeneous catalysts. Journal of Analytical and Applied Pyrolysis 127:292–98. doi:10.1016/j.jaap.2017.07.022.
  • Collard, F. X., and J. Blin. 2014. A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renewable and Sustainable Energy Reviews 38:594–608. doi:10.1016/j.rser.2014.06.013.
  • de Wild, P. J., H. Den Uil, J. H. Reith, J. H. A. Kiel, and H. J. Heeres. 2009. Biomass valorisation by staged degasification: A new pyrolysis-based thermochemical conversion option to produce value-added chemicals from lignocellulosic biomass. Journal of Analytical and Applied Pyrolysis 85 (1–2):124–33. doi:10.1016/j.jaap.2008.08.008.
  • Dobele, G., G. Rossinskaja, G. Telysheva, D. Meier, and O. Faix. 1999. Cellulose dehydration and depolymerization reactions during pyrolysis in the presence of phosphoric acid. Journal of Analytical and Applied Pyrolysis 49 (1–2):307–17. doi:10.1016/S0165-2370(98)00126-0.
  • Falco, C., F. Perez Caballero, F. Babonneau, C. Gervais, G. Laurent, -M.-M. Titirici, and N. Baccile. 2011. Hydrothermal carbon from biomass: Structural differences between hydrothermal and pyrolyzed carbons via 13C solid state NMR. Langmuir 27 (23):14460–71. doi:10.1021/la202361p.
  • Gogoi, D., N. Bordoloi, R. Goswami, R. Narzari, R. Saikia, D. Sut, L. Gogoi, and R. Kataki. 2017. Effect of torrefaction on yield and quality of pyrolytic products of arecanut husk: An agro-processing wastes. Bioresource Technology 242:36–44. doi:10.1016/j.biortech.2017.03.169.
  • Hammer, N. L., R. A. Garrido, J. Starcevich, C. G. Coe, and J. A. Satrio. 2015. Two-step pyrolysis process for producing high quality bio-oils. Industrial & Engineering Chemistry Research 54 (43):10629–37. doi:10.1021/acs.iecr.5b02365.
  • Huang, Y., L. Wei, J. Julson, Y. Gao, and X. Zhao. 2015. Converting pine sawdust to advanced biofuel over HZSM-5 using a two-stage catalytic pyrolysis reactor. Journal of Analytical and Applied Pyrolysis 111:148–55. doi:10.1016/j.jaap.2014.11.019.
  • Kawamoto, H. 2016. Review of reactions and molecular mechanisms in cellulose pyrolysis. Current Organic Chemistry 20 (23):2444–57. doi:10.2174/2213337203666160525102910.
  • Kim, H. Y. 2014. Statistical notes for clinical researchers: Two-way analysis of variance (ANOVA)-exploring possible interaction between factors. Restorative dentistry & endodontics 39 (2):143–47. doi:10.5395/rde.2014.39.2.143.
  • Li, K., C. Zhu, L. Zhang, and X. Zhu. 2016. Study on pyrolysis characteristics of lignocellulosic biomass impregnated with ammonia source. Bioresource Technology 209:142–47. doi:10.1016/j.biortech.2016.02.136.
  • Lu, Q., W. -M. Xiong, W. -Z. Li, Q. -X. Guo, and X. -F. Zhu. 2009. Catalytic pyrolysis of cellulose with sulfated metal oxides: A promising method for obtaining high yield of light furan compounds. Bioresource Technology 100 (20):4871-4876. doi: 10.1016/j.biortech.2009.04.068.
  • Lu, Q., X. C. Yang, C. Q. Dong, Z. F. Zhang, X. M. Zhang, and X. F. Zhu. 2011. Influence of pyrolysis temperature and time on the cellulose fast pyrolysis products: Analytical Py-GC/MS study. Journal of Analytical and Applied Pyrolysis 92 (2):430–38. doi:10.1016/j.jaap.2011.08.006.
  • Mayer, Z. A., A. Apfelbacher, and A. Hornung. 2012. A comparative study on the pyrolysis of metal- and ash-enriched wood and the combustion properties of the gained char. Journal of Analytical and Applied Pyrolysis 96:196–202. doi:10.1016/j.jaap.2012.04.007.
  • Miskolczi, N., F. Buyong, A. Angyal, P. T. Williams, and L. Bartha. 2010. Two stages catalytic pyrolysis of refuse derived fuel: Production of biofuel via syncrude. Bioresource Technology 101 (22):8881–90. doi:10.1016/j.biortech.2010.06.103.
  • Paine III, J. B., Y. B. Pithawalla, and J. D. Naworal. 2008. Carbohydrate pyrolysis mechanisms from isotopic labeling: Part 3. The pyrolysis of d-glucose: Formation of C3 and C4 carbonyl compounds and a cyclopentenedione isomer by electrocyclic fragmentation mechanisms. Journal of Analytical and Applied Pyrolysis 82 (1):42–69. doi:10.1016/j.jaap.2007.12.005.
  • Paine, J. B., Y. B. Pithawalla, and J. D. Naworal. 2008. Carbohydrate pyrolysis mechanisms from isotopic labeling: Part 4. The pyrolysis of D-glucose: The formation of furans. Journal of Analytical and Applied Pyrolysis 83 (1):37–63. doi:10.1016/j.jaap.2008.05.008.
  • Pastorova, I., R. E. Botto, P. W. Arisz, and J. J. Boon. 1994. Cellulose char structure: A combined analytical Py-GC-MS, FTIR, and NMR study. Carbohydrate Research 262 (1):27–47. doi:10.1016/0008-6215(94)84003-2.
  • Patwardhan, P. R., D. L. Dalluge, B. H. Shanks, and R. C. Brown. 2011. Distinguishing primary and secondary reactions of cellulose pyrolysis. Bioresource Technology 102 (8):5265–69. doi:10.1016/j.biortech.2011.02.018.
  • Qiao, K., X. Shi, F. Zhou, H. Chen, J. Fu, H. Ma, and H. Huang. 2017. Catalytic fast pyrolysis of cellulose in a microreactor system using hierarchical zsm-5 zeolites treated with various alkalis. Applied Catalysis A: General 547:274–82. doi:10.1016/j.apcata.2017.07.034.
  • Richards, G. N. 1987. Glycolaldehyde from pyrolysis of cellulose. Journal of Analytical and Applied Pyrolysis 10 (3):251–55. doi:10.1016/0165-2370(87)80006-2.
  • Shafizadeh, F., and Y. Lai. 1972. Thermal degradation of 1, 6-anhydro-. beta.-D-glucopyranose. The Journal of Organic Chemistry 37 (2):278–84. doi:10.1021/jo00967a020.
  • Shen, D. K., and S. Gu. 2009. The mechanism for thermal decomposition of cellulose and its main products. Bioresource Technology 100 (24):6496–504. doi:10.1016/j.biortech.2009.06.095.
  • Smith, M. W., B. Pecha, G. Helms, L. Scudiero, and M. Garcia-Perez. 2017. Chemical and morphological evaluation of chars produced from primary biomass constituents: Cellulose, xylan, and lignin. Biomass and Bioenergy 104:17–35. doi:10.1016/j.biombioe.2017.05.015.
  • Srinivasan, V., S. Adhikari, S. A. Chattanathan, M. Tu, and S. Park. 2014. Catalytic pyrolysis of raw and thermally treated cellulose using different acidic Zeolites. BioEnergy Research 7 (3):867–75. doi:10.1007/s12155-014-9426-8.
  • Thangalazhy-Gopakumar, S., S. Adhikari, R. B. Gupta, and S. D. Fernando. 2011. Influence of pyrolysis operating conditions on bio-oil components: A microscale study in a pyroprobe. Energy & Fuels 25 (3):1191–99. doi:10.1021/ef101032s.
  • Wang, S., G. Dai, B. Ru, Y. Zhao, X. Wang, G. Xiao, and Z. Luo. 2017a. Influence of torrefaction on the characteristics and pyrolysis behavior of cellulose. Energy 120:864–71. doi:10.1016/j.energy.2016.11.135.
  • Wang, S., Z. Xia, Y. Hu, Z. He, B. B. Uzoejinwa, Q. Wang, B. Cao, and S. Xu. 2017b. Co-pyrolysis mechanism of seaweed polysaccharides and cellulose based on macroscopic experiments and molecular simulations. Bioresource Technology 228:305–14. doi:10.1016/j.biortech.2016.12.004.
  • Westerhof, R. J. M., D. W. F. Brilman, M. Garcia-Perez, Z. Wang, S. R. G. Oudenhoven, and S. R. A. Kersten. 2012. Stepwise fast pyrolysis of pine wood. Energy & Fuels 26 (12):7263–73. doi:10.1021/ef301319t.
  • Xin, S., H. Yang, Y. Chen, M. Yang, L. Chen, X. Wang, and H. Chen. 2015. Chemical structure evolution of char during the pyrolysis of cellulose. Journal of Analytical and Applied Pyrolysis 116:263–71. doi:10.1016/j.jaap.2015.09.002.
  • Yang, H., R. Yan, H. Chen, D. H. Lee, and C. Zheng. 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86 (12–13):1781–88. doi:10.1016/j.fuel.2006.12.013.
  • Ye, X. N., Q. Lu, X. Wang, H. Q. Guo, M. S. Cui, C. Q. Dong, and Y. P. Yang. 2017. Catalytic fast pyrolysis of cellulose and biomass to selectively produce levoglucosenone using activated carbon catalyst. ACS Sustainable Chemistry & Engineering 5 (11):10815–25. doi:10.1021/acssuschemeng.7b02762.
  • Yu, M., J. Li, and L. Wang. 2017. KOH-activated carbon aerogels derived from sodium carboxymethyl cellulose for high-performance supercapacitors and dye adsorption. Chemical Engineering Journal 310:300-306. doi: 10.1016/j.cej.2016.10.121.
  • Zhang, H., X. Meng, C. Liu, Y. Wang, and R. Xiao. 2017a. Selective low-temperature pyrolysis of microcrystalline cellulose to produce levoglucosan and levoglucosenone in a fixed bed reactor. Fuel Processing Technology 167:484–90. doi:10.1016/j.fuproc.2017.08.007.
  • Zhang, L., K. Li, and X. Zhu. 2017b. Study on two-step pyrolysis of soybean stalk by TG-FTIR and Py-GC/MS. Journal of Analytical and Applied Pyrolysis 127:91–98. doi:10.1016/j.jaap.2017.08.019.
  • Zhang, L., S. Li, K. Li, and X. Zhu. 2018. Two-step pyrolysis of corncob for value-added chemicals and high quality bio-oil: Effects of pyrolysis temperature and residence time. Energy Conversion and Management 166:260–67. doi:10.1016/j.enconman.2018.04.002.
  • Zhang, Y., C. Liu, and X. Chen. 2015. Unveiling the initial pyrolytic mechanisms of cellulose by DFT study. Journal of Analytical and Applied Pyrolysis 113:621–29. doi:10.1016/j.jaap.2015.04.010.
  • Zhang, Y., P. Chen, S. Liu, P. Peng, M. Min, Y. Cheng, E. Anderson, N. Zhou, L. Fan, C. Liu, et al. 2017c. Effects of feedstock characteristics on microwave-assisted pyrolysis - A review. Bioresource Technology 230:143–51. doi:10.1016/j.biortech.2017.01.046.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.