216
Views
9
CrossRef citations to date
0
Altmetric
Articles

Co-pyrolysis characteristics and synergistic mechanism of low-rank coal and direct liquefaction residue

, , , , &
Pages 2675-2689 | Received 22 Aug 2018, Accepted 25 Nov 2018, Published online: 06 Feb 2019

References

  • Blesa, M. J., J. L. Miranda, R. Moliner, M. T. Izquierdo, and J. M. Palacios. 2003. Low-temperature co-pyrolysis of a low-rank coal and biomass to prepare smokeless fuel briquettes. Journal of Applied Analysis 70 (2):665–77.
  • Haykiri-Acma, H., and S. Yaman. 2007. Synergy in devolatilization characteristics of lignite and hazelnut shell during co-pyrolysis. Fuel 86 (3):373–80. doi:10.1016/j.fuel.2006.07.005.
  • Haykiri-Acma, H., and S. Yaman. 2010. Interaction between biomass and different rank coals during co-pyrolysis. Renewable Energy 35 (1):288–92. doi:10.1016/j.renene.2009.08.001.
  • Jin, X., E. Li, C. Pan, S. Yu, and J. Liu. 2013. Interaction of coal and oil in confined pyrolysis experiments: Insight from the yield and composition of gas hydrocarbons. Marine and Petroleum Geology 48 (177):379–91. doi:10.1016/j.marpetgeo.2013.09.002.
  • Jun, L. I., J. L. Yang, and Z. Y. Liu. 2010. Pyrolysis behavior of direct coal liquefaction residues. Journal of Fuel Chemistry and Technology 38 (4):385–90.
  • Khare, S., and M. Dell’Amico. 2013. An overview of solid–Liquid separation of residues from coal liquefaction processes. The Canadian Journal of Chemical Engineering 91 (2):324–31. doi:10.1002/cjce.21647.
  • Li, X., Y. Xue, J. Feng, Q. Yi, W. Li, & X. Guo, and K. Liu. 2015. Co-pyrolysis of lignite and shendong coal direct liquefaction residue. Fuel 144:342–48. doi:10.1016/j.fuel.2014.12.049.
  • Lu, H., A. Chen, L. Gao, A. Liu, and Y. Guo. 2015. Study on low-temperature pyrolysis of Shangwan coal with TG-FTIR. Coal Conversion 38 (3):32–35.
  • Lv, D., Z. Bai, Y. Wei, J. Bai, L. Kong, Z. Guo, X. Li, J. Xu, and W. Li. 2016. Properties of direct coal liquefaction residue water slurry: Effect of treatment by low temperature pyrolysis. Fuel 179:135–40. doi:10.1016/j.fuel.2016.03.081.
  • Mu, L., J. Chen, P. Yao, D. Zhou, L. Zhao, and H. Yin. 2016. Evaluation of co-pyrolysis petrochemical wastewater sludge with lignite in a thermogravimetric analyzer and a packed-bed reactor: Pyrolysis characteristics, kinetics, and products analysis. Bioresource Technology 221:147–56. doi:10.1016/j.biortech.2016.09.011.
  • Muthuraman, M., T. Namioka, and K. Yoshikawa. 2010. A comparative study on co-combustion performance of municipal solid waste and indonesian coal with high ash indian coal: A thermogravimetric analysis. Fuel Processing Technology 91 (5):550–58. doi:10.1016/j.fuproc.2009.12.018.
  • Peng, X. W., X. Q. Ma, Y. S. Lin, Z. G. Guo, S. C. Hu, & X. X. Ning, Y. Cao, and Y. Zhang 2015. Co-pyrolysis between microalgae and textile dyeing sludge by tg-ftir: Kinetics and products. Energy Conversion and Management 100 (2):391–402.
  • Shah, A., R. Fishwick, J. Wood, G. Leeke, S. Rigby, and M. Greaves. 2010. A review of novel techniques for heavy oil and bitumen extraction and upgrading. Energy & Environmental Science 3 (6):700–14. doi:10.1039/b918960b.
  • Sharypov, V. I., N. G. Beregovtsova, B. N. Kuznetsov, V. L. Cebolla, S. Collura, G. Finqueneisel, T. Zimny and J. V. Weber. 2007. Influence of reaction parameters on brown coal–Polyolefinic plastic co-pyrolysis behavior. Journal of Applied Analysis 78 (2):257–64.
  • Song, H., G. Liu, J. Zhang, and J. Wu. 2017. Pyrolysis characteristics and kinetics of low rank coals by TG-FTIR method. Fuel Processing Technology 156:454–60. doi:10.1016/j.fuproc.2016.10.008.
  • Song, Y., Q. Ma, and W. He. 2016. Co-pyrolysis properties and product composition of low-rank coal and heavy oil. Energy & Fuels : An American Chemical Society Journal 31 (1):217–23. doi:10.1021/acs.energyfuels.6b02106.
  • Song, Y., C. Wu, J. Shi, and X. Lan. 2015. Influences of direct coal liquefaction residue content on formed coke made with low rank coal. Journal of Combustion Science and Technology 21 (1):28–35.
  • Song, Y., and J. Tang. 2016. Coal chemical technology. Beijing: Chemical Technology Press.
  • Tao, X., and X. Huang. 2010. Study on combustion mechanism of asphalt binder by using TG–FTIR technique. Fuel 89 (9):2185–90. doi:10.1016/j.fuel.2010.01.012.
  • Wang, S., H. Lin, B. Ru, W. Sun, Y. Wang, and Z. Luo. 2014. Comparison of the pyrolysis behavior of pyrolytic lignin and milled wood lignin by using TG–FTIR analysis. Journal of Applied Analysis 108 (7):78–85.
  • Wu, Z., W. Yang, X. Tian, and B. Yang. 2017. Synergistic effects from co-pyrolysis of low-rank coal and model components of microalgae biomass. Energy Conversion and Management 135:212–25. doi:10.1016/j.enconman.2016.12.060.
  • Xu, J., Z. Bai, J. Bai, L. Kong, D. Lv, Y. Han, X. Dai, and W. Li. 2017. Physico-chemical structure and combustion properties of chars derived from co-pyrolysis of lignite with direct coal liquefaction residue. Fuel 187:103–10. doi:10.1016/j.fuel.2016.09.028.
  • Zhang W., Y. Zheng, N. Ma, and W. Zhao. 2014. Organic chemistry. Beijing: Higher Education Press.
  • Zhou, L. M., Y. P. Wang, Q. W. Huang, and J. Q. Cai. 2008. Thermogravimetric analysis and kinetics of coal/plastic co-pyrolysis. Journal of Combustion Science & Technology 14 (2):132–36.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.