421
Views
28
CrossRef citations to date
0
Altmetric
Articles

Integrated feasibility experimental investigation of hydrodynamic, geometrical and, operational characterization of methanol conversion to formaldehyde

, ORCID Icon, & ORCID Icon
Pages 89-103 | Received 08 Jun 2018, Accepted 18 Jan 2019, Published online: 04 Mar 2019

References

  • Albrecht, L., and R. J. Boyd. 2015. Atomic energy analysis of cooperativity, anti-cooperativity, and non-cooperativity in small clusters of methanol, water, and formaldehyde. Computational and Theoretical Chemistry 1053:328–36. doi:10.1016/j.comptc.2014.08.022.
  • Alonso-Buenaposada, I. D., N. Rey-Raap, E. G. Calvo, J. Angel Menéndez, and A. Arenillas. 2015. Effect of methanol content in commercial formaldehyde solutions on the porosity of RF carbon xerogels. Journal of Non-Crystalline Solids 426:13–18. doi:10.1016/j.jnoncrysol.2015.06.017.
  • Al‐Shihri, S., C. J. Richard, and D. Chadwick. 2017. Selective oxidation of methane to methanol over ZSM‐5 catalysts in aqueous hydrogen peroxide: Role of formaldehyde. ChemCatChem 9 (7):1276–83. doi:10.1002/cctc.201601563.
  • Behera, G. C., and K. Parida. 2012. Selective gas phase oxidation of methanol to formaldehyde over aluminum promoted vanadium phosphate. Chemical Engineering Journal 180:270–76. doi:10.1016/j.cej.2011.11.047.
  • Cassone, G., F. Pietrucci, F. Saija, F. Guyot, and A. Marco Saitta. 2017. One-step electric-field driven methane and formaldehyde synthesis from liquid methanol. Chemical Science 8 (3):2329–36. doi:10.1039/c6sc04269d.
  • Davarpanah, A. 2018a. Feasible analysis of reusing flowback produced water in the operational performances of oil reservoirs. Environmental Science and Pollution Research 25:35387-35395. doi:10.1007/s11356-018-3506-9.
  • Davarpanah, A. 2018b. A feasible visual investigation for associative foam polymer injectivity performances in the oil recovery enhancement. European Polymer Journal 105:405–11. doi:10.1016/j.eurpolymj.2018.06.017.
  • Davarpanah, A., R. Shirmohammadi, and B. Mirshekari. 2019. Experimental evaluation of polymer-enhanced foam transportation on the foam stabilization in the porous media. International Journal of Environmental Science and Technology. doi: 10.1007/s13762-01902280-z.
  • Dias, A., P. Soares, F. Montemor, M. F. Portela, and A. Kiennemann. 2015. The role of the suprastoichiometric molybdenum during methanol to formaldehyde oxidation over Mo–Fe mixed oxides. Journal of Molecular Catalysis A: Chemical 397:93–98. doi:10.1016/j.molcata.2014.10.022.
  • Genner, A., C. Gasser, H. Moser, J. Ofner, J. Schreiber, and B. Lendl. 2017. On-line monitoring of methanol and methyl formate in the exhaust gas of an industrial formaldehyde production plant by a mid-IR gas sensor based on tunable Fabry-Pérot filter technology. Analytical and Bioanalytical Chemistry 409 (3):753–61. doi:10.1007/s00216-016-0040-9.
  • Gong, C., J. Liu, L. Peng, and F. Liu. 2017. Numerical study of effect of injection and ignition timings on combustion and unregulated emissions of DISI methanol engine during cold start. Renewable Energy 112:457–65. doi:10.1016/j.renene.2017.05.055.
  • Gong, C., L. Peng, and F. Liu. 2017. Modeling of the overall equivalence ratio effects on combustion process and unregulated emissions of an SIDI methanol engine. Energy 125:118–26. doi:10.1016/j.energy.2017.02.045.
  • Gribovskii, A. G., E. V. Ovchinnikova, N. V. Vernikovskaya, D. V. Andreev, V. A. Chumachenko, and L. L. Makarshin. 2017. Microchannel reactor for intensifying oxidation of methanol to formaldehyde over Fe-Mo catalyst. Chemical Engineering Journal 308:135–41. doi:10.1016/j.cej.2016.09.058.
  • Jiang, W. Z., J. Adamec, and D. P. Weeks. 2013. A small-scale, inexpensive method for detecting formaldehyde or methanol in biochemical reactions containing interfering substances. Analytical Biochemistry 442 (2):146–48. doi:10.1016/j.ab.2013.08.003.
  • Jin, G., W. Weng, Z. Lin, N. F. Dummer, S. H. Taylor, C. J. Kiely, J. K. Bartley, and G. J. Hutchings. 2012. Fe2 (MoO4) 3/MoO3 nano-structured catalysts for the oxidation of methanol to formaldehyde. Journal of Catalysis 296:55–64. doi:10.1016/j.jcat.2012.09.001.
  • Latimer, A. A., F. Abild-Pedersen, and J. K. Nørskov. 2017. A theoretical study of methanol oxidation on RuO2 (110): Bridging the pressure gap. ACS Catalysis 7 (7):4527–34. doi:10.1021/acscatal.7b01417.
  • Liu, H., Z. Bai, Y. Liu, X. Guo, Y. Fu, and X. Pu. 2016. Interpretation and prediction of the vapor–Liquid equilibrium of formaldehyde–Water–Methanol ternary system by the conductor-like screening model for real solvents. Fluid Phase Equilibria 429:233–41. doi:10.1016/j.fluid.2016.09.012.
  • Liu, J., C. Gong, L. Peng, F. Liu, X. Yu, and Y. Li. 2017. Numerical study of formaldehyde and unburned methanol emissions of direct injection spark ignition methanol engine under cold start and steady state operating conditions. Fuel 202:405–13. doi:10.1016/j.fuel.2017.04.059.
  • Marpani, F., Z. Sárossy, M. Pinelo, and A. S. Meyer. 2017. Kinetics based reaction optimization of enzyme catalyzed reduction of formaldehyde to methanol with synchronous cofactor regeneration. Biotechnology and Bioengineering 114 (12):2762–70. doi:10.1002/bit.26405.
  • Massa, M., R. Häggblad, S. Hansen, and A. Andersson. 2011. Oxidation of methanol to formaldehyde on cation vacant Fe–V–Mo-oxide. Applied Catalysis A: General 408 (1–2):63–72. doi:10.1016/j.apcata.2011.09.015.
  • Nikolenko, N. V., I. V. Kozhevnikov, A. O. Kostyniuk, H. Bayahia, and Y. V. Kalashnykov. 2016. Preparation of iron molybdate catalysts for methanol to formaldehyde oxidation based on ammonium molybdoferrate (II) precursor. Journal of Saudi Chemical Society 22:372-379 doi:10.1016/j.jscs.2016.04.002.
  • Oestreich, D., L. Lautenschütz, U. Arnold, and J. Sauer. 2017. Reaction kinetics and equilibrium parameters for the production of oxymethylene dimethyl ethers (OME) from methanol and formaldehyde. Chemical Engineering Science 163:92–104. doi:10.1016/j.ces.2016.12.037.
  • Ozbek, M. O., and J. W. Hans Niemantsverdriet. 2015. Methane, formaldehyde and methanol formation pathways from carbon monoxide and hydrogen on the (0 0 1) surface of the iron carbide χ-Fe5C2. Journal of Catalysis 325:9–18. doi:10.1016/j.jcat.2015.01.018.
  • Raoof, J.-B., S. R. Hosseini, and S. Rezaee. 2014. Preparation of Pt/poly (2-Methoxyaniline)-sodium dodecyl sulfate composite and its application for electrocatalytic oxidation of methanol and formaldehyde. Electrochimica Acta 141:340–48. doi:10.1016/j.electacta.2014.07.054.
  • Raoof, J.-B., S. R. Hosseini, and S. Rezaee. 2015. A simple and effective route for preparation of platinum nanoparticle and its application for electrocatalytic oxidation of methanol and formaldehyde. Journal of Molecular Liquids 212:767–74. doi:10.1016/j.molliq.2015.10.031.
  • Razmjoo, A., M. Qolipour, R. Shirmohammadi, S. Mohammadreza Heibati, and I. Faraji. 2017. Techno‐economic evaluation of standalone hybrid solar‐wind systems for small residential districts in the central desert of Iran. Environmental Progress & Sustainable Energy 36 (4):1194–207. doi:10.1002/ep.12554.
  • Redondo, A. B., D. Fodor, M. A. Brown, and J. A. van Bokhoven. 2014. Formaldehyde, methanol and methyl formate from formic acid reaction over supported metal catalysts. Catalysis Communications 56:128–33. doi:10.1016/j.catcom.2014.07.005.
  • Sadhukhan, M., M. K. Kundu, T. Bhowmik, and S. Barman. 2017. Highly dispersed platinum nanoparticles on graphitic carbon nitride: A highly active and durable electrocatalyst for oxidation of methanol, formic acid and formaldehyde. International Journal of Hydrogen Energy 42 (15):9371–83. doi:10.1016/j.ijhydene.2017.03.097.
  • Schmitz, N., E. StröFer, J. Burger, and H. Hasse. 2017. Conceptual design of a novel process for the production of poly (oxymethylene) dimethyl ethers from formaldehyde and methanol. Industrial & Engineering Chemistry Research 56 (40):11519–30. doi:10.1021/acs.iecr.7b02314.
  • Shan, J., F. R. Lucci, J. Liu, M. El-Soda, M. D. Marcinkowski, L. F. Allard, E. Charles, H. Sykes, and M. Flytzani-Stephanopoulos. 2016. Water co-catalyzed selective dehydrogenation of methanol to formaldehyde and hydrogen. Surface Science 650:121–29. doi:10.1016/j.susc.2016.02.010.
  • Shirmohammadi, R., B. Ghorbani, M. Hamedi, M.-H. Hamedi, and L. M. Romeo. 2015. Optimization of mixed refrigerant systems in low temperature applications by means of group method of data handling (GMDH). Journal of Natural Gas Science and Engineering 26:303–12. doi:10.1016/j.jngse.2015.06.028.
  • Shirmohammadi, R., and N. Gilani. 2018. Effectiveness enhancement and performance evaluation of indirect‐direct evaporative cooling system for a wide variety of climates. Environmental Progress & Sustainable Energy. doi:10.1002/ep.13032.
  • Sutton, J. E., T. Danielson, A. Beste, and A. Savara. 2017. Below-room-temperature C–H bond breaking on an inexpensive metal oxide: Methanol to formaldehyde on CeO2 (111). The Journal of Physical Chemistry Letters 8 (23):5810–14. doi:10.1021/acs.jpclett.7b02683.
  • Tan, H., Y. Xiong, K.-Z. Li, and L.-M. Chen. 2017. Methanol-enhanced removal and metabolic conversion of formaldehyde by a black soybean from formaldehyde solutions. Environmental Science and Pollution Research 24 (5):4765–77. doi:10.1007/s11356-016-8212-x.
  • Vining, W. C., J. Strunk, and A. T. Bell. 2012. Investigation of the structure and activity of VOx/CeO2/SiO2 catalysts for methanol oxidation to formaldehyde. Journal of Catalysis 285 (1):160–67. doi:10.1016/j.jcat.2011.09.024.
  • Whiting, G. T., J. K. Bartley, N. F. Dummer, G. J. Hutchings, and S. H. Taylor. 2014. Vanadium promoted molybdenum phosphate catalysts for the vapour phase partial oxidation of methanol to formaldehyde. Applied Catalysis A: General 485:51–57. doi:10.1016/j.apcata.2014.07.029.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.