503
Views
0
CrossRef citations to date
0
Altmetric
Articles

Conceptual design of distillation columns sequence for separation of pentane and hexane from C5+ stream of LPG unit

ORCID Icon &
Pages 267-280 | Received 19 Aug 2018, Accepted 05 Jan 2019, Published online: 05 Mar 2019

References

  • Aggarwal, A., and C. Floudas. 1990. Synthesis of general distillation sequences—Nonsharp separations. Computers and Chemical Engineering 14 (6):631–53. doi:10.1016/0098-1354(90)87033-L.
  • Agrawal, R. 1996. Synthesis of distillation column configurations for a multicomponent separation. Industrial and Engineering Chemistry Research 35 (4):1059–71. doi:10.1021/ie950323h.
  • Andrecovich, M. J., and A. Westerberg. 1985. An MILP formulation for heat‐integrated distillation sequence synthesis. AIChE Journal 31 (9):1461–74. doi:10.1002/(ISSN)1547-5905.
  • Banka, S., and S. Dutta. 2016. Interactive matlab program for design of multicomponent distillation column using FUG method. International Journal on Advances in Engineering Technology and Science 2 (2):21–25.
  • Boozarjomehry, R. B., A. P. Laleh, and W. Y. Svrcek. 2009. Automatic design of conventional distillation column sequence by genetic algorithm. The Canadian Journal of Chemical Engineering 87 (3):477–92. doi:10.1002/cjce.v87:3.
  • Boozarjomehry, R. B., A. P. Laleh, and W. Y. Svrcek. 2012. Evolutionary design of optimum distillation column sequence. The Canadian Journal of Chemical Engineering 90 (4):956–72. doi:10.1002/cjce.20589.
  • Caballero, J. A., and I. E. Grossmann. 2001. Generalized disjunctive programming model for the optimal synthesis of thermally linked distillation columns. Industrial and Engineering Chemistry Research 40 (10):2260–74. doi:10.1021/ie000761a.
  • Caballero, J. A., and I. E. Grossmann. 2004. Design of distillation sequences: From conventional to fully thermally coupled distillation systems. Computers and Chemical Engineering 28 (11):2307–29. doi:10.1016/j.compchemeng.2004.04.010.
  • Caballero, J. A., and I. E. Grossmann. 2006. Structural considerations and modeling in the synthesis of heat-integrated− thermally coupled distillation sequences. Industrial and Engineering Chemistry Research 45 (25):8454–74. doi:10.1021/ie060030w.
  • Caballero, J. A., and I. E. Grossmann. 2014. Optimal synthesis of thermally coupled distillation sequences using a novel MILP approach. Computers and Chemical Engineering 61:118–35. doi:10.1016/j.compchemeng.2013.10.015.
  • Cheng, S. H., and Y. Liu. 1988. Studies in chemical process design and synthesis. 8. A simple heuristic method for the synthesis of initial sequences for sloppy multicomponent separations. Industrial and Engineering Chemistry Research 27 (12):2304–22. doi:10.1021/ie00084a016.
  • Douglas, J. 1988. Conceptual design of chemical processes. New York: McGraw-Hill.
  • Engelien, H. K., and S. Skogestad. 2004. Selecting appropriate control variables for a heat-integrated distillation system with prefractionator. Computers and Chemical Engineering 28 (5):683–91. doi:10.1016/j.compchemeng.2004.02.023.
  • Engelien, H. K., and S. Skogestad. 2005. Multi-effect distillation applied to an industrial case study. Chemical Engineering and Processing: Process Intensification 44 (8):819-26. doi:10.1016/j.cep.2004.06.015.
  • Farkas, T., B. Czuczai, and Z. Lelkes. 2008. New MINLP model and modified outer approximation algorithm for distillation column synthesis. Industrial and Engineering Chemistry Research 47 (9):3088–103. doi:10.1021/ie0711426.
  • Floudas, C., and G. Paules IV. 1988. A mixed-integer nonlinear programming formulation for the synthesis of heat-integrated distillation sequences. Computers and Chemical Engineering 12 (6):531–46. doi:10.1016/0098-1354(88)87003-0.
  • Floudas, C. A., and S. H. Anastasiadis. 1988. Synthesis of distillation sequences with several multicomponent feed and product streams. Chemical Engineering Science 43 (9):2407–19. doi:10.1016/0009-2509(88)85175-3.
  • Floudast, C. 1992. Synthesis of heat integratednonsharp distillation sequences. Computers and Chemical Engineering 16 (2):89–108. doi:10.1016/0098-1354(92)80008-W.
  • Fraga, E. S., and T. R. S. Matias. 1996. Synthesis and optimization of a nonideal distillation system using a parallel genetic algorithm. Computers and Chemical Engineering 20:S79–S84. doi:10.1016/0098-1354(96)00024-5.
  • Gu, J., X. You, C. Tao, J. Li, W. Shen, and J. Li. 2018. Improved design and optimization for separating tetrahydrofuran–Water azeotrope through extractive distillation with and without heat integration by varying pressure. Chemical Engineering Research and Design 133:303–13. doi:10.1016/j.cherd.2018.03.015.
  • Guthrie, K. M. 1969. Capital cost estimation. Chemical Engineering 24:114–42.
  • Hernández, S., S. Pereira‐Pech, A. Jiménez, and V. Rico‐Ramírez. 2003. Energy efficiency of an indirect thermally coupled distillation sequence. The Canadian Journal of Chemical Engineering 81 (5):1087–91. doi:10.1002/cjce.5450810522.
  • Holland, C. D. 1981. Fundamentals of multicomponent distillation. New York: McGraw-Hill.
  • Hu, Z., B. Chen, and D. W. T. Rippin. 1991. Synthesis of general distillation-based separation system, AIChE Annual Meeting, Los Angeles, CA, Paper 155b.
  • Ivakpour, J., and N. Kasiri. 2009. Synthesis of distillation column sequences for nonsharp separations. Industrial and Engineering Chemistry Research 48 (18):8635–49. doi:10.1021/ie802013r.
  • Jana, A. K. 2010. Heat integrated distillation operation. Applied Energy 87 (5):1477–94. doi:10.1016/j.apenergy.2009.10.014.
  • Liu, Z.-Y. 1998. Matrix-based heuristic synthesis of distillation sequences with several feed streams and multicomponent products. Chemical Engineering Research and Design 76 (3):302–07. doi:10.1205/026387698524947.
  • Liu, Z.-Y., and X.-E. Xu. 1995. Heuristic procedure for the synthesis of distillation sequences with multicomponent products. Chemical Engineering Science 50 (12):1997–2004. doi:10.1016/0009-2509(95)00030-9.
  • Malek, N., and P. Glavič. 1994. Theoretical bases of separation sequence heuristics. Computers and Chemical Engineering 18:S143–S147. doi:10.1016/0098-1354(94)80024-3.
  • Malone, M., K. Glinos, F. Marquez, and J. Douglas. 1985. Simple, analytical criteria for the sequencing of distillation columns. AIChE Journal 31 (4):683–89. doi:10.1002/(ISSN)1547-5905.
  • Nishida, N., G. Stephanopoulos, and A. W. Westerberg. 1981. A review of process synthesis. AIChE Journal 27 (3):321–51. doi:10.1002/(ISSN)1547-5905.
  • Novak, Z., Z. Kravanja, and I. Grossmann. 1996. Simultaneous synthesis of distillation sequences in overall process schemes using an improved MINLP approach. Computers and Chemical Engineering 20 (12):1425–40. doi:10.1016/0098-1354(95)00240-5.
  • Paules, G., IV, and C. Floudas. 1988. Synthesis of flexible distillation sequences for multiperiod operation. Computers and Chemical Engineering 12 (4):267–80. doi:10.1016/0098-1354(88)85038-5.
  • Petlyuk, F. B. 1965. Thermodynamically optimal method for separating multicomponent mixtures. International Journal of Chemical Engineering 5:555–61.
  • Pibouleau, L., P. Floquet, and S. Domenech. 2000. Fuzziness and branch and bound procedures: Applications to separation sequencing. Fuzzy Sets and Systems 109 (1):111–27. doi:10.1016/S0165-0114(98)00045-1.
  • Porter, K., and S. Momoh. 1991. Finding the optimum sequence of distillation columns-an equation to replace the “rules of thumb”(heuristics). The Chemical Engineering Journal 46 (3):97–108. doi:10.1016/0300-9467(91)87001-Q.
  • Rév, E., M. Emtir, Z. Szitkai, P. Mizsey, and Z. Fonyó. 2001. Energy savings of integrated and coupled distillation systems. Computers and Chemical Engineering 25 (1):119–40. doi:10.1016/S0098-1354(00)00643-8.
  • Sargent, R., and K. Gaminibandara. 1976. Optimum design of plate distillation columns. Optimization in Action 58:267–314.
  • Seader, J., and A. Westerberg. 1977. A combined heuristic and evolutionary strategy for synthesis of simple separation sequences. AIChE Journal 23 (6):951–54. doi:10.1002/(ISSN)1547-5905.
  • Seihoub, F.-Z., H. Benyounes, W. Shen, and V. Gerbaud. 2017. An improved shortcut design method of divided wall columns exemplified by a liquefied petroleum gas process. Industrial and Engineering Chemistry Research 56 (34):9710–20. doi:10.1021/acs.iecr.7b02125.
  • Smith, J., H. Van Ness, and M. Abbott. 2001. Introduction to chemical engineering thermodynamics, 7th ed. ( (2005)). New York: McGraw-Hill.
  • Sobočan, G., and P. Glavič. 2000. A simple synthesis method for studying thermally integrated distillation sequences. The Canadian Journal of Chemical Engineering 78 (5):908–16. doi:10.1002/(ISSN)1939-019X.
  • Thompson, R. W., and C. J. King. 1972. Systematic synthesis of separation schemes. AIChE Journal 18 (5):941–48. doi:10.1002/(ISSN)1547-5905.
  • Wang, K., Y. Qian, Y. Yuan, and P. Yao. 1998. Synthesis and optimization of heat integrated distillation systems using an improved genetic algorithm. Computers and Chemical Engineering 23 (1):125–36. doi:10.1016/S0098-1354(98)00254-3.
  • Yang, A., L. Lv, W. Shen, L. Dong, J. Li, and X. Xiao. 2017. Optimal design and effective control of the tert-amyl methyl ether production process using an integrated reactive dividing wall and pressure swing columns. Industrial and Engineering Chemistry Research 56 (49):14565–81. doi:10.1021/acs.iecr.7b03459.
  • Yang, A., R. Wei, S. Sun, S. A. Wei, W. Shen, and I.-L. Chien. 2018. Energy-saving optimal design and effective control of heat integration-extractive dividing wall column for separating heterogeneous mixture methanol/toluene/water with multiazeotropes. Industrial and Engineering Chemistry Research 57 (23):8036–56. doi:10.1021/acs.iecr.8b00668.
  • Yeomans, H., and I. E. Grossmann. 1999. Nonlinear disjunctive programming models for the synthesis of heat integrated distillation sequences. Computers and Chemical Engineering 23 (9):1135–51. doi:10.1016/S0098-1354(99)00279-3.
  • Yeomans, H., and I. E. Grossmann. 2000. Disjunctive programming models for the optimal design of distillation columns and separation sequences. Industrial and Engineering Chemistry Research 39 (6):1637–48. doi:10.1021/ie9906520.
  • You, X., J. Gu, C. Peng, W. Shen, and H. Liu. 2017. Improved design and optimization for separating azeotropes with heavy component as distillate through energy-saving extractive distillation by varying pressure. Industrial and Engineering Chemistry Research 56 (32):9156–66. doi:10.1021/acs.iecr.7b00687.
  • Zhang, L., and A. A. Linninger. 2006. Towards computer‐aided separation synthesis. AIChE Journal 52 (4):1392–409. doi:10.1002/(ISSN)1547-5905.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.