487
Views
4
CrossRef citations to date
0
Altmetric
Articles

A new simplified mechanism for combustion of RP-3/Jet-A kerosene

, , & ORCID Icon
Pages 676-687 | Received 12 Oct 2018, Accepted 08 Jan 2019, Published online: 04 Mar 2019

References

  • Bahlouli, K., R. K. Saray, and U. Atikol. 2012. Development of a reduced mechanism for n-heptane fuel in HCCI combustion engines by applying combined reduction methods. Energy & Fuels 26 (6):3244–56. doi:10.1007/978-3-319-04681-5_95.
  • Dagaut, P., and M. Cathonnet. 2006. The ignition, oxidation, and combustion of kerosene: A review of experimental and kinetic modeling. Progress in Energy and Combustion Science 32 (1):48–92. doi:10.1016/j.pecs.2005.10.003.
  • Doute, C., J. L. Delfau, and C. Vovelle. 1997. Modeling of the structure of a premixed n-decane flame. Combustion Science and Technology 130:269–313. doi:10.1080/00102209708935746.
  • Honnet, S., K. Seshadri, U. Niemann, and N. Peters. 2009. A surrogate fuel for kerosene. Proceedings of the Combustion Institute 32 (1):485–92. doi:10.1016/j.proci.2008.06.218.
  • Kumar, K., C. J. Sung, and X. Hui. 2011. Laminar flame speeds and extinction limits of conventional and alternative jet fuels. Fuel 90 (3):1004–11. doi:10.1016/j.fuel.2010.11.022.
  • Lu, T. F., and C. K. Law. 2009. Toward accommodating realistic fuel chemistry in large-scale computations. Progress in Energy and Combustion Science 35 (2):192–215. doi:10.1016/j.pecs.2008.10.002.
  • Luche, J., M. Reuillon, J. C. Boettner, and M. Cathonnet. 2004. Reduction of large detailed kinetic mechanisms: Application to kerosene/air combustion. Combustion Science and Technology 176:1935–63. doi:10.1080/00102200490504571.
  • Maragkos, G., T. Beji, and B. Merci. 2017. Advances in modelling in CFD simulations of turbulent gaseous pool fires. Combustion and Flame 181:22–38. doi:10.1016/j.combustflame.2017.03.012.
  • Patterson, P. M., A. G. Kyne, M. Pourkashanian, and A. Williams. 2001. Combustion of kerosene in counterflow diffusion flames. Journal of Propulsion and Power 17:453–460. doi: 10.2514/2.5764.
  • Picou, J., W. A. Niemoeller, S. Lee, and H. B. Lanterman. 2011. A kinetic model based on the sequential reaction mechanism for the noncatalytic reformation of jet fuel in supercritical water. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 33:785–94. doi:10.1080/15567030903261899.
  • Tay, K. L., W. M. Yang, B. Mohan, D. Zhou, W. B. Yu, and F. Y. Zhao. 2016. Development of a reduced kerosene–Diesel reaction mechanism with embedded soot chemistry for diesel engines. Fuel 181:926–34. doi:10.1016/j.fuel.2016.05.029.
  • Vasu, S. S., D. F. Davidson, and R. K. Hanson. 2008. Jet fuel ignition delay times: Shock tube experiments over wide conditions and surrogate model predictions. Combustion and Flame 152 (1–2):125–43. doi:10.1016/j.combustflame.2007.06.019.
  • Violi, A., S. Yan, E. G. Eddings, and A. F. Sarofim. 2002. Experimental formulation and kinetic model for JP-8 surrogate mixtures. Combustion Science and Technology 174:399–417. doi:10.1080/00102200290021740.
  • Wang, F., and X. Y. Li. 2014. ReaxRed, A Fortran program for mechanism reduction. Chengdu: Sichuan University. http://ccg.scu.edu.cn/jianhua.
  • Wang, H. W., and M. A. Oehlschlaeger. 2012. Autoignition studies of conventional and Fischer–Tropsch jet fuels. Fuel 98:249–58. doi:10.1016/j.fuel.2012.03.041.
  • Wang, Q. D., Y. M. Fang, F. Wang, and X. Y. Li. 2012. Skeletal mechanism generation for high-temperature oxidation of kerosene surrogates. Combustion and Flame 159 (1):91–102. doi:10.1016/j.combustflame.2011.05.019.
  • Wang, T. S. 2001. Thermophysics characterization of kerosene combustion. Journal of Thermophysics and Heat Transfer 15:140–47. doi:10.2514/2.6602.
  • Xu, J. Q., J. J. Guo, A. K. Liu, J. L. Wang, N. X. Tan, and X. Y. Li. 2015. Construction of autoignition mechanisms for the combustion of RP-3 surrogate fuel and kinetics simulation. Acta Physico-Chimica Sinica 31 (4):643–52. doi:10.3866/PKU.WHXB201503022.
  • Yan, Y. W., Y. C. Liu, W. Fang, Y. P. Liu, and J. H. Li. 2018. A simplified chemical reaction mechanism for two-component RP-3 kerosene surrogate fuel and its verification. Fuel 227:127–34. doi:10.1016/j.fuel.2018.04.092.
  • Zeng, W., H. X. Li, B. D. Chen, and H. A. Ma. 2015. Experimental and kinetic modeling study of ignition characteristics of Chinese RP-3 kerosene. Combustion Science and Technology 187:396–409. doi:10.1080/00102202.2014.948620.
  • Zhang, C. H., B. Li, F. Rao, P. Li, and X. Y. Li. 2015. A shock tube study of the autoignition characteristics of RP-3 jet fuel. Proceedings of the Combustion Institute 35 (3):3151–58. doi:10.1016/j.proci.2014.05.017.
  • Zheng, D., W. M. Yu, and B. J. Zhong. 2015. RP-3 aviation kerosene surrogate fuel and the chemical reaction kinetic model. Acta Physico-Chimica Sinica 4:636–42. doi:10.3866/PKU.WHXB201501231.
  • Zhukov, V. P., V. A. Sechenov, and A. Y. Starikovskiy. 2014. Autoignition of kerosene (Jet-A)/air mixtures behind reflected shock waves. Fuel 126:169–76. doi:10.1016/j.fuel.2014.02.036.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.