139
Views
8
CrossRef citations to date
0
Altmetric
Articles

Valorization of peach stones to high efficient activated carbon: Synthesis, characterization, and application for Cr(VI) removal from aqueous medium

&
Pages 688-699 | Received 23 May 2018, Accepted 08 Feb 2019, Published online: 26 Mar 2019

References

  • Abbas, M., S. Kaddour, and M. Trari. 2014. Kinetic and equilibrium studies of cobalt adsorption on apricot stone activated carbon. Journal of Industrial and Engineering Chemistry 20:745–51. doi:10.1016/j.jiec.2013.06.030.
  • Association Française De Normalisation (AFNOR), 1979. Recueil de normes françaises. Eaux: méthodes d’essais, 342 pp.
  • Deveci, H., and Y. Kar. 2013. Adsorption of hexavalent chromium from aqueous solutions by bio-chars obtained during biomass pyrolysis. Journal of Industrial and Engineering Chemistry 19:190–96. doi:10.1016/j.jiec.2012.08.001.
  • Dima, J. B., C. Sequeiros, and N. E. Zaritzky. 2015. Hexavalent chromium removal in contaminated water using reticulated chitosan micro/nanoparticles from seafood processing wastes. Chemosphere 141:100–11. doi:10.1016/j.chemosphere.2015.06.030.
  • Doke, K. M., and E. M. Khan. 2017. Equilibrium, kinetic and diffusion mechanism of Cr(VI) adsorption onto activated carbon derived from wood apple shell. Arabian Journal of Chemistry 10:S252–S260. doi:10.1016/j.arabjc.2012.07.031.
  • Durán-Jiménez, G., V. Hernández-Montoya, M. A. Montes-Morán, A. Bonilla-Petriciolet, and N. A. Rangel-Vázquez. 2014. Adsorption of dyes with different molecular properties on activated carbons prepared from lignocellulosic wastes by Taguchi method. Microporous and Mesoporous Materials 199:99–107. doi:10.1016/j.micromeso.2014.08.013.
  • Duranoğlu, D., A. W. Trochimczuk, and Ü. Beker. 2010. A comparison study of peach stone and acrylonitrile-divinylbenzene copolymer based activated carbons as chromium (VI) sorbents. Chemical Engineering Journal 165:56–63. doi:10.1016/j.cej.2010.08.054.
  • Gilcreas, F. W., M. J. Tarars, and R. S. Ingols. 1965. New York: American Public Health Association.
  • Gottipati, R., and S. Mishra. 2016. Preparation of microporous activated carbon from Aegle Marmelos fruit shell and its application in removal of chromium (VI) from aqueous phase. Journal of Industrial and Engineering Chemistry 36:355–63. doi:10.1016/j.jiec.2016.03.005.
  • Gueye, M., Y. Richardson, F. T. Kafack, and J. Blin. 2014. High efficiency activated carbons from African biomass residues for the removal of chromium (VI) from wastewater. Journal of Environmental Chemical Engineering 2:273–81. doi:10.1016/j.jece.2013.12.014.
  • Igberase, E., P. Osifo, and A. Ofomaja. 2017. Chromium (VI) ion adsorption by grafted cross-linked chitosan beads in aqueous solution – A mathematical and statistical modeling study. Environmental Technology 38:3156–66. doi:10.1080/09593330.2017.1290152.
  • Khelaifia, F. Z., S. Hazourli, S. Nouacer, R. Hachani, and M. Ziati. 2016. Valorization of raw biomaterial waste-date stones-for Cr (VI) adsorption in aqueous solution: Thermodynamics, kinetics and regeneration studies. International Biodeterioration & Biodegradation 114:76–86. doi:10.1016/j.ibiod.2016.06.002.
  • Kopinke, F.-D., A. Georgi, and K.-U. Goss. 2018. Comment on “Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solution: A critical review, published by Tran et al. [Water Research 120, 2017, 88–116]”. Water Research 129:520–21. doi:10.1016/j.watres.2017.09.055.
  • Kuppusamy, S., P. Thavamani, M. Megharaj, K. Venkateswarlu, Y. B. Lee, and R. Naidu. 2016. Potential of Melaleuca diosmifolia leaf as a low-cost adsorbent for hexavalent chromium removal from contaminated water bodies. Process Safety and Environmental Protection 100:173–82. doi:10.1016/j.psep.2016.01.009.
  • Marković, S., A. Stanković, Z. Lopičić, S. Lazarević, M. Stojanović, and D. Uskoković. 2015. Application of raw peach shell particles for removal of methylene blue. Journal of Environmental Chemical Engineering 3:716–24. doi:10.1016/j.jece.2015.04.002.
  • Mechati, F., C. Bouchelta, M. S. Medjram, R. Benrabaa, and N. Ammouchi. 2015. Effect of hard and soft structure of different biomasses on the porosity development of activated carbon prepared under N2/microwave radiations. Journal of Environmental Chemical Engineering 3:1928–38. doi:10.1016/j.jece.2015.07.007.
  • Nowicki, P., J. Kazmierczak, and R. Pietrzak. 2015. Comparison of physicochemical and sorption properties of activated carbons prepared by physical and chemical activation of cherry stones. Powder Technology 269:312–19. doi:10.1016/j.powtec.2014.09.023.
  • Rahman, M. M., M. Awang, B. S. Mohosina, B. Y. Kamaruzzaman, W. B. Wan Nik, and C. M. C. Adnan. 2012. Waste palm shell converted to high efficient activated carbon by chemical activation method and its adsorption capacity tested by water filtration. APCBEE Procedia 1:293–98. doi:10.1016/j.apcbee.2012.03.048.
  • Rangabhashiyam, S., and N. Selvaraju. 2015a. Evaluation of the biosorption potential of a novel Caryota urens inflorescence waste biomass for the removal of hexavalent chromium from aqueous solutions. Journal of the Taiwan Institute of Chemical Engineers 47:59–70. doi:10.1016/j.jtice.2014.09.034.
  • Rangabhashiyam, S., and N. Selvaraju. 2015b. Adsorptive remediation of hexavalent chromium from synthetic wastewater by a natural and ZnCl2 activated Sterculia guttata shell. Journal of Molecular Liquids 207:39–49. doi:10.1016/j.molliq.2015.03.018.
  • Shamsuddin, M. S., N. R. N. Yusoff, and M. A. Sulaiman. 2016. Synthesis and characterization of activated carbon produced from kenaf core fiber using H3PO4 activation. Procedia Chemistry 19:558–65. doi:10.1016/j.proche.2016.03.053.
  • Shoaib, M., and H. M. Al-Swaidan. 2015. Optimization and characterization of sliced activated carbon prepared from date palm tree fronds by physical activation. Biomass and Bioenergy 73:124–34. doi:10.1016/j.biombioe.2014.12.016.
  • Sing, K. S., D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, and T. Siemieniewska. 1985. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Applications Chemical 57:603–19. doi:10.1351/pac198557040603.
  • Torrellas, S. Á., R. García Lovera, N. Escalona, C. Sepúlveda, J. Luis Sotelo, and J. García. 2015. Chemical-activated carbons from peach stones for the adsorption of emerging contaminants in aqueous solutions. Chemical Engineering Journal 279:788–98. doi:10.1016/j.cej.2015.05.104.
  • Uysal, T., G. Duman, Y. Onal, I. Yasa, and J. Yanik. 2014. Production of activated carbon and fungicidal oil from peach stone by two-stage process. Journal of Analytical and Applied Pyrolysis 108:47–55. doi:10.1016/j.jaap.2014.05.017.
  • Ziati, M., F. Khemmari, M. Kecir, and S. Hazourli. 2017. Removal of chromium from tannery wastewater by electrosorption on carbon prepared from peach stones: Effect of applied Potential. Carbon Letters 21:81–85. doi:10.5714/CL.2017.21.081.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.