734
Views
26
CrossRef citations to date
0
Altmetric
Articles

Efficient bioethanol production from pomegranate peels by newly isolated Kluyveromyces marxianus

, &
Pages 709-718 | Received 06 Nov 2018, Accepted 16 Feb 2019, Published online: 04 Apr 2019

References

  • Aswathy, U. S., R. K. Sukumaran, G. Lalitha Devi, K. P. Rajasree, R. R. Singhania, and A. Pandey. 2010. Bio-ethanol from water hyacinth biomass: an evaluation of enzymatic saccharification strategy. Bioresource Technology 101 (3):925–30. doi:10.1016/j.biortech.2009.08.019.
  • Birol, F., L. Vozzi, A. Bromhead, T. Gould, M. Baroni, T. Gül, D. Dorner, A. Al-Saffar, C. Besson, and A. Blasi. 2014. World energy outlook. International Energy Agency. Paris: IEA PUBLICATIONS.
  • Charoensopharat, K., P. Thanonkeo, S. Thanonkeo, and M. Yamada. 2015. Ethanol production from jerusalem artichoke tubers at high temperature by newly isolated thermotolerant inulin-utilizing yeast Kluyveromyces marxianus using consolidated bioprocessing. Antonie Van Leeuwenhoek, International Journal of General and Molecular Microbiology 108 (1):173–90. doi:10.1007/s10482-015-0476-5.
  • Choo, J. H., C. Han, D. W. Lee, G. H. Sim, H. Y. Moon, and J.-Y. Kim. 2018. Molecular and functional characterization of two pyruvate decarboxylase genes, PDC1 and PDC5, in the thermotolerant yeast Kluyveromyces marxianus. Applied Microbiology and Biotechnology 102:3723–37. doi:10.1007/s00253-018-8862-3.
  • Da Cruz, H., M. Batistote, and J. R. Ernandes. 2003. Effect of sugar catabolite repression in correlation with the structural complexity of the nitrogen source on yeast growth and fermentation. Journal of the Institute of Brewing 109 (4):349–55. doi:10.1002/j.2050-0416.2003.tb00609.x.
  • Das, A., P. Ghosh, T. Paul, U. Ghosh, B. R. Pati, and K. C. Mondal. 2016. Production of bioethanol as useful biofuel through the bioconversion of water hyacinth (Eichhornia Crassipes). 3 Biotech 6 (1):1–9. doi:10.1007/s13205-016-0385-y.
  • Deesuth, O., P. Laopaiboon, P. Jaisil, and L. Laopaiboon. 2012. Optimization of nitrogen and metal ions supplementation for very high gravity bioethanol fermentation from sweet sorghum juice using an orthogonal array design. Energies 5:3178–97. doi:10.3390/en5093178.
  • Demiray, E., S. E. Karatay, and G. Dönmez. 2018. Evaluation of pomegranate peel in ethanol production by saccharomyces cerevisiae and pichia stipitis. Energy 159:988–94. doi:10.1016/j.energy.2018.06.200.
  • Deniz, E., G. Yeşilören, N. Özdemir, and A. İşçi. 2015. Türkiye’de Gıda Endüstri̇si̇ Kaynaklı Bi̇yokütle ve Bi̇yoyakıt Potansi̇yeli̇. Gıda 40 (1):47–54. doi:10.15237/gida.GD14037.
  • Dziugan, P., M. Balcerek, K. Pielech-Przybylska, and P. Patelski. 2013. evaluation of the fermentation of high gravity thick sugar beet juice worts for efficient bioethanol production. Biotechnology for Biofuels 6 (158):2–11. doi:10.1186/1754-6834-6-158.
  • Evcan, E., and C. Tari. 2015. Production of bioethanol from apple pomace by using cocultures: conversion of agro-industrial waste to value added product. Energy 88:775–82. doi:10.1016/j.energy.2015.05.090.
  • Fakruddin, M., A. Islam, M. M. Ahmed, and N. Chowdhury. 2013. Isolated from agro-industrial waste process optimization of bioethanol production by stress tolerant yeasts isolated from agro-industrial waste. International Journal of Renewable and Sustainable Energy 2 (4):133–39. doi:10.11648/j.ijrse.20130204.11.
  • Flagfeldt, D. B., V. Siewers, L. Huang, and J. Nielsen. 2009. Characterization of chromosomal integration sites for heterologous gene expression in saccharomyces cerevisiae. Yeast (Chichester, England) 26 (10):545–51. doi:10.1002/yea.
  • Goldemberg, J. 2008. Conference on the ecological dimensions of biofuels. Environmental and Ecological Dimensions of Biofuels 16–17. https://www.esa.org/biofuels/docfiles/Biofuels08Program.pdf
  • Günan Yücel, H., and Z. Aksu. 2015. ethanol fermentation characteristics of pichia stipitis yeast from sugar beet pulp hydrolysate: use of new detoxification methods. Fuel 158:793–99. doi:10.1016/j.fuel.2015.06.016.
  • Hasnaoui, N., B. Wathelet, and A. Jiménez-Araujo. 2014. Valorization of pomegranate peel from 12 cultivars: dietary fibre composition, antioxidant capacity and functional properties. Food Chemistry 160:196–203. doi:10.1016/j.foodchem.2014.03.089.
  • Hernandez-Orte, P., M. Bely, J. Cacho, and V. Ferreira. 2006. Impact of ammonium additions on volatile acidity, ethanol, and aromatic compound production by different saccharomyces cerevisiae strains during fermentation in controlled synthetic media. Australian Journal of Grape and Wine Research 12 (2):150–60. doi:10.1111/j.1755-0238.2006.tb00055.x.
  • Ioelovich, M., and E. Morag. 2012. Study of enzymatic hydrolysis of pretreated biomass at increased solids loading. BioResources 7 (4):4672–82. doi:10.15376/BIORES.7.1.1040-1052.
  • Jung, Y. H., I. J. Kim, H. K. Kim, and K. H. Kim. 2013. Dilute acid pretreatment of lignocellulose for whole slurry ethanol fermentation. Bioresource Technology 132:109–14. doi:10.1016/j.biortech.2012.12.151.
  • Kelbert, M., A. Romaní, E. Coelho, F. B. Pereira, J. A. Teixeira, and L. Domingues. 2015. lignocellulosic bioethanol production with revalorization of low-cost agroindustrial by-products as nutritional supplements. Industrial Crops and Products 64:16–24. doi:10.1016/j.indcrop.2014.10.056.
  • Kim, T. H., and Y. Y. Lee. 2005. Pretreatment of corn stover by soaking by soaking in aqueous ammonia. Applied Biochemistry and Biotechnology 121:1119–31. doi:10.1385/ABAB:124:1-3:1119.
  • Kirk, L. A., and H. W. Doelle. 1992. the effects of potassium and chloride ions on the ethanolic fermentation of sucrose by zymomonas mobilis 2716. Applied Microbiology and Biotechnology 37:88–93. doi:10.1007/BF00174209.
  • Kuhad, R. C., R. Gupta, Y. P. Khasa, and A. Singh. 2010. bioethanol production from lantana camara (red sage): pretreatment, saccharification and fermentation. Bioresource Technology 101 (21):8348–54. doi:10.1016/j.biortech.2010.06.043.
  • Laopaiboon, L., S. Nuanpeng, P. Srinophakun, P. Klanrit, and P. Laopaiboon. 2009. Ethanol production from sweet sorghum juice using very high gravity technology: effects of carbon and nitrogen supplementations. Bioresource Technology 100 (18):4176–82. doi:10.1016/j.biortech.2009.03.046.
  • Madeira-Jr, J. V., and A. K. Gombert. 2018. Towards high-temperature fuel ethanol production using Kluyveromyces marxianus: on the search for plug-in strains for the brazilian sugarcane-based biorefinery. Biomass and Bioenergy 119 (September):217–28. doi:10.1016/j.biombioe.2018.09.010.
  • Melzoch, K., M. Rychtera, and V. Hábová. 1994. Effect of Immobilization upon the properties and behaviour of saccharomyces cerevisiae cells. Journal of Biotechnology 32 (1):59–65. doi:10.1016/0168-1656(94)90120-1.
  • Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry 31 (3):426–28. doi:10.1021/ac60147a030.
  • Naik, S. N., V. V. Goud, P. K. Rout, and A. K. Dalai. 2010. Production of first and second generation biofuels: a comprehensive review. Renewable and Sustainable Energy Reviews 14 (2):578–97. doi:10.1016/j.rser.2009.10.003.
  • Narra, M., J. P. James, and V. Balasubramanian. 2015. Bioresource technology simultaneous saccharification and fermentation of delignified lignocellulosic biomass at high solid loadings by a newly isolated thermotolerant Kluyveromyces Sp. for ethanol production. Bioresource Technology 179:331–38. doi:10.1016/j.biortech.2014.11.116.
  • Nikolic, S., L. Mojovic, M. Rakin, and D. Pejin. 2009. bioethanol production from corn meal by simultaneous enzymatic saccharification and fermentation with immobilized cells of saccharomyces cerevisiae var. Ellipsoideus. Fuel 88:1602–07. doi:10.1016/j.fuel.2008.12.019.
  • Palabiyik, B., and F. Jafari Ghods. 2015. Role of oxidative stress response and trehalose accumulation in the longevity of fission yeast. Jundishapur J Microbiol 8 (6):e16851. doi:10.5812/jjm.8(6)2015.16851.
  • Pejin, J. D., L. V. Mojović, D. J. Pejin, S. D. Kocić-Tanackov, D. S. Savić, S. B. Nikolić, and A. P. Djukić-Vuković. 2015. Bioethanol production from triticale by simultaneous saccharification and fermentation with magnesium or calcium ions addition. Fuel 142:58–64. doi:10.1016/j.fuel.2014.10.077.
  • Pessani, N. K., H. K. Atiyeh, M. R. Wilkins, D. D. Bellmer, and I. M. Banat. 2011. Bioresource technology simultaneous saccharification and fermentation of kanlow switchgrass by thermotolerant Kluyveromyces marxianus IMB3 : the effect of enzyme loading, temperature and higher solid loadings. Bioresource Technology 102 (22):10618–24. doi:10.1016/j.biortech.2011.09.011.
  • Piskur, J., E. Rozpedowska, S. Polakova, A. Merico, and C. Compagno. 2006. How did saccharomyces evolve to become a good brewer? Trends in Genetics 22 (4):183–86. doi:10.1016/j.tig.2006.02.002.
  • Rastogi, M., and S. Shrivastava. 2017. Recent advances in second generation bioethanol production: an insight to pretreatment, saccharification and fermentation processes. Renewable and Sustainable Energy Reviews 80 (May):330–40. doi:10.1016/j.rser.2017.05.225.
  • Rees, E. M. R., and G. G. Stewart. 1997. The effects of increased magnesium and calcium concentrations on yeast fermentation performance in high gravity worts. Journal of the Institute of Brewing 103 (June 1996):287–91. doi:10.1002/j.2050-0416.1997.tb00958.x.
  • Rezende, C. A., B. W. Atta, M. C. Breitkreitz, R. Simister, L. D. Gomez, and S. J. McQueen-Mason. 2018. Optimization of biomass pretreatments using fractional factorial experimental design. Biotechnology for Biofuels 11 (1):1–15. doi:10.1186/s13068-018-1200-2.
  • Rocha, M., V. Ponte, T. H. S. Rodrigues, V. M. M. Melo, L. R. B. Gonçalves, and G. R. De MacEdo. 2011. Cashew apple bagasse as a source of sugars for ethanol production by Kluyveromyces marxianus CE025. Journal of Industrial Microbiology and Biotechnology 38 (8):1099–107. doi:10.1007/s10295-010-0889-0.
  • Rodrigues, T. H. S., E. M. De Barros, J. De Sá Brígido, and L. R. B. Gonçalves. 2016. the bioconversion of pretreated cashew apple bagasse into ethanol by SHF and SSF processes. Applied Biochemistry and Biotechnology 178:1167–83. doi:10.1007/s12010-015-1936-0.
  • Sandoval-Nuñez, D., M. Arellano-Plaza, A. Gschaedler, J. Arrizon, and L. Amaya-Delgado. 2018. A comparative study of lignocellulosic ethanol productivities by Kluyveromyces marxianus and saccharomyces cerevisiae. Clean Technologies and Environmental Policy 20 (7):1491–99. doi:10.1007/s10098-017-1470-6.
  • Sheikh, R. A., O. A. Al-Bar, and Y. M. A. Soliman. 2016. Biochemical studies on the production of biofuel (bioethanol) from potato peels wastes by saccharomyces cerevisiae: effects of fermentation periods and nitrogen source concentration. Biotechnology and Biotechnological Equipment 30 (3):497–505. doi:10.1080/13102818.2016.1159527.
  • Sindhu, R., M. Kuttiraja, P. Binod, R. K. Sukumaran, and A. Pandey. 2014. Bioethanol production from dilute acid pretreated indian bamboo variety (Dendrocalamus Sp.) by separate hydrolysis and fermentation. Industrial Crops and Products 52:169–76. doi:10.1016/j.indcrop.2013.10.021.
  • Sousa, C. C. D., G. T. I. Gonçalves, and L. N. S. S. Falleiros. 2018. Ethanol production using agroindustrial residues as fermentation substrates by Kluyveromyces marxianus. Industrial Biotechnology 14 (6):308–14. doi:10.1089/ind.2018.0023.
  • Talekar, S., A. F. Patti, R. Vijayraghavan, and A. Arora. 2018. An integrated green biorefinery approach towards simultaneous recovery of pectin and polyphenols coupled with bioethanol production from waste pomegranate peels. Bioresource Technology 266 (June):322–34. doi:10.1016/j.biortech.2018.06.072.
  • Tilloy, V., A. Ortiz-Julien, and S. Dequin. 2014. Reduction of ethanol yield and improvement of glycerol formation by adaptive evolution of the wine yeast saccharomyces cerevisiae under hyperosmotic conditions. Applied and Environmental Microbiology 80 (8):2623–32. doi:10.1128/AEM.03710-13.
  • Troujeni, M. E., M. Khojastehpour, A. Vahedi, and B. Emadi. 2018. Sensitivity analysis of energy inputs and economic evaluation of pomegranate production in Iran. Information Processing in Agriculture 5 (1):114–23. doi:10.1016/j.inpa.2017.10.002.
  • Turcotte, B., X. B. Liang, F. Robert, and N. Soontorngun. 2010. Transcriptional regulation of nonfermentable carbon utilization in budding yeast. FEMS Yeast Research 10 (1):2–13. doi:10.1111/j.1567-1364.2009.00555.x.
  • Wang, W., L. Kang, H. Wei, and R. Arora. 2011. Study on the decreased sugar yield in enzymatic hydrolysis of cellulosic substrate at high solid loading. Applied Biochemistry and Biotechnology 1139–49. 10.1007/s12010-011-9200-8
  • Wistara, N. J., R. Pelawi, and W. Fatriasari. 2016. The effect of lignin content and freeness of pulp on the bioethanol productivity of jabon wood. Waste and Biomass Valorization 7 (5):1141–46. doi:10.1007/s12649-016-9510-8.
  • Xin, F., A. Geng, M. L. Chen, and M. J. M. Gum. 2010. Enzymatic hydrolysis of sodium dodecyl sulphate (SDS)-pretreated newspaper for cellulosic ethanol production by saccharomyces cerevisiae and pichia stipitis. Applied Biochemistry and Biotechnology 162 (4):1052–64. doi:10.1007/s12010-009-8861-z.
  • Yamaoka, C., O. Kurita, and T. Kubo. 2014. Improved ethanol tolerance of saccharomyces cerevisiae in mixed cultures with kluyveromyces lactis on high-sugar fermentation. Microbiological Research 169 (12):907–14. doi:10.1016/j.micres.2014.04.007.
  • Yeh, R. H., Y. S. Lin, T. H. Wang, W. C. Kuan, and W. C. Lee. 2016. Bioethanol production from pretreated miscanthus floridulus biomass by simultaneous saccharification and fermentation. Biomass and Bioenergy 94:110–16. doi:10.1016/j.biombioe.2016.08.009.
  • Yu, C. Y., B. H. Jiang, and K. J. Duan. 2013. Production of bioethanol from carrot pomace using the thermotolerant yeast Kluyveromyces marxianus. Energies 6 (3):1794–801. doi:10.3390/en6031794.
  • Zabed, H., J. N. Sahu, A. Suely, A. N. Boyce, and G. Faruq. 2017. Bioethanol production from renewable sources: current perspectives and technological progress. Renewable and Sustainable Energy Reviews 71 (October 2015):475–501. doi:10.1016/j.rser.2016.12.076.
  • Zhao, X. Q., C. Xue, X. M. Ge, W. J. Yuan, J. Y. Wang, and F. W. Bai. 2009. Impact of zinc supplementation on the improvement of ethanol tolerance and yield of self-flocculating yeast in continuous ethanol fermentation. Journal of Biotechnology 139 (1):55–60. doi:10.1016/j.jbiotec.2008.08.013.
  • Zhou, J., P. Zhu, H. Xiaoyue, L. Hong, and Y. Yao. 2018. Improved secretory expression of lignocellulolytic enzymes in Kluyveromyces marxianus by promoter and signal sequence engineering. Biotechnology for Biofuels 11 (1):235. doi:10.1186/s13068-018-1232-7.
  • Zhu, C. P., X. C. Zhai, L. Q. Li, X. X. Wu, and L. Bing. 2015. Response surface optimization of ultrasound-assisted polysaccharides extraction from pomegranate peel. Food Chemistry 177:139–46. doi:10.1016/j.foodchem.2015.01.022.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.