492
Views
20
CrossRef citations to date
0
Altmetric
Articles

Visible-light-driven photocatalysts for hydrogen production by water splitting

&
Pages 719-729 | Received 28 Jul 2018, Accepted 10 Feb 2019, Published online: 16 Apr 2019

References

  • Bell, S., G. Will, and J. Bel. 2013. Light intensity effects on photocatalytic water splitting with a titania catalyst. International Journal of Hydrogen Energy 38:6938–47. doi:10.1016/j.ijhydene.2013.02.147.
  • Chen, J., D. Yang, D. Song, J. Jiang, A. Ma, M. M. Z. Hu, and C. Ni. 2015. Recent progress in enhancing solar-to-hydrogen efficiency: Review. Journal of Power Sources 280:649–66. doi:10.1016/j.jpowsour.2015.01.073.
  • Chen, X., S. Shen, L. Guo, and S. S. Mao. 2010. Semiconductor-based photocatalytic hydrogen generation. Chemical Reviews 110:6503–70. doi:10.1021/cr1001645.
  • Cheng, P., Z. Yang, H. Wang, W. Cheng, M. Chen, W. Shangguan, and G. Ding. 2012. TiO2-graphene nanocomposites for photocatalytic hydrogen production from splitting water. International Journal of Hydrogen Energy 37:2224–30. doi:10.1016/j.ijhydene.2011.11.004.
  • Dai, K., X. Zhang, K. Fan, P. Zeng, and T. Peng. 2014. Multiwalled carbon nanotube-TiO2 nanocomposite for visible-light induced photocatalytic hydrogen evolution. Journal of Nanomaterials 2014:1–8.
  • Ding, J., W. Yan, S. Sun, J. Bao, and C. Gao. 2014. Fabrication of graphene/CaIn2O4 composites with enhanced photocatalytic activity from water under visible light irradiation. International Journal of Hydrogen Energy 39:119–26. doi:10.1016/j.ijhydene.2013.10.077.
  • Fujishima, A., and K. Honda. 1972. Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38.
  • Galinska, A., and J. Walendziewski. 2005. Photocatalytic water splitting over Pt-TiO2 in the presence of sacrificial reagents. Energy and Fuels 19:1143–47. doi:10.1021/ef0400619.
  • Haldorai, Y., A. Rengaraj, J. B. Lee, Y. S. Huh, and Y. K. Han. 2015. Highly efficient hydrogen production via water splitting using Pt@MWNT/TiO2 ternary hybrid composite as a catalyst under UV-Visible light. Synthetic Metals 199:345–52. doi:10.1016/j.synthmet.2014.12.014.
  • Ji, S. M., H. Jun, J. S. Jang, H. C. Son, P. H. Borse, and J. S. Lee. 2007. Photocatalytic hydrogen production from natural seawater. Journal of Photochemistry and Photobiology A: Chemistry 189:141–44. doi:10.1016/j.jphotochem.2007.01.011.
  • Koca, A., and M. Sahin. 2002. Photocatalytic hydrogen production by direct sun light from sulphite and sulpide solution. International Journal of Hydrogen Energy 27:363–67. doi:10.1016/S0360-3199(01)00133-1.
  • Kudo, A. 2007. Recent progress in the development of visible light-driven powdered photocatalysts for water splitting. International Journal of Hydrogen Energy 32:2673–78. doi:10.1016/j.ijhydene.2006.09.010.
  • Lei, Z., M. Ze-Da, C. Kwang-Youn, and O. Won-Chun. 2012. Synthesis of CdS/CNT-TiO2 with a high photocatalytic activity in photodegradation of methylene blue. New Carbon Materials 27:166–74. doi:10.1016/S1872-5805(12)60011-0.
  • Linkous, C. A., C. Huang, and R. Fowler. 2004. UV photochemical oxidation of aqueous sodium sulfide to produce hydrogen and sulphur. Journal of Photochemistry and Photobiology A: Chemistry 168:153–60. doi:10.1016/j.jphotochem.2004.03.028.
  • Liu, X., P. Zeng, T. Peng, X. Zhang, and K. Deng. 2012. Preparation of multiwalled carbon nanotubes/Cd0.8Zn0.2S nanocomposite and its photocatalytic hydrogen production under visible-light. International Journal of Hydrogen Energy 37:1375–84. doi:10.1016/j.ijhydene.2011.10.030.
  • Majalca, B. C. H., M. J. M. Zaragoza, J. M. S. Gutierrez, A. L. Ortiz, and V. C. Martinez. 2018. Visible-light photo-assisted synthesis of GO-TiO2 composites for the photocatalytic hydrogen production. International Journal of Hydrogen Energy : 1–9.
  • Miwa, T., S. Kaneco, H. Katsumata, T. Suzuki, K. Ohta, S. C. Verma, and K. Sugihara. 2010. Photocatalytic hydrogen production from aqueous methanol solution with CuO/Al2O3/TiO2 nanocomposite. International Journal of Hydrogen Energy 35:6554–60. doi:10.1016/j.ijhydene.2010.03.128.
  • Ni, M., M. K. H. Leung, D. Y. C. Leung, and K. Sumathy. 2007. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable and Sustainable Energy Reviews 11:401–25. doi:10.1016/j.rser.2005.01.009.
  • Pan, H. 2016. Principles on design and fabrication of nanomaterials as photocatalysts for water splitting. Renewable and Sustainable Energy Reviews 57:584–601. doi:10.1016/j.rser.2015.12.117.
  • Peng, T., P. Zeng, D. Ke, X. Liu, and X. Zhang. 2011. Hydrothermal preparation of Multiwalled Carbon Nanotubes (MWCNTs)/CdS nanocomposite and its efficient photocatalytic hydrogen production under visible light irradiation. Energy and Fuels 25:2203–10. doi:10.1021/ef200369z.
  • Pradhan, A. C., S. Martha, S. K. Mahanta, and K. M. Parida. 2011. Mesoporous nanocomposite Fe/Al2O3-MCM-41: An efficient photocatalyst for hydrogen production under visible light. International Journal of Hydrogen Energy 36:12753–60. doi:10.1016/j.ijhydene.2011.07.002.
  • Ramesh, R. N., K. M. Mamatha, K. K. Cheralathan, and M. V. Shankar. 2018. Enhanced photocatalytic hydrogen production activity of noble metal free MWCNT-TiO2 nanocomposites. International Journal of Hydrogen Energy 43 (8):4036–4043.
  • Saadetnejad, D., and R. Yildirim. 2017. Photocatalytic hydrogen production by water splitting over Au/Al-SrTiO3. International Journal of Hydrogen Energy 43 (2):1116–1122.
  • Shahriary, L., and A. A. Athawale. 2014. Graphene oxide synthesized by using modified Hummers approach. International Journal of Renewable Energy and Environmental Engineering 2:58–63.
  • Sosa, J. F. G., B. S. Rosales, P. J. V. Pelayo, and H. Lasa. 2017. Photacatalytic hydrogen production using mesoporous TiO2 doped with Pt. Applied Catalysis B: Environmental 211:337–48. doi:10.1016/j.apcatb.2017.04.029.
  • Ullah, K., S. Ye, L. Zhu, S. B. Jo, W. K. Jang, K. Y. Cho, and W. C. Oh. 2014. Noble metal doped graphene nanocomposites and its study of photocatalytic hydrogen evolution. Solid State Science 31:91–98. doi:10.1016/j.solidstatesciences.2014.03.006.
  • Wang, Q., N. An, Y. Bai, H. Hang, J. Li, X. Lu, Y. Liu, F. Wang, Z. Li, and Z. Lei. 2013. High photocatalytic hydrogen production from methanol aqueous solution using the photocatalysts CuS/TiO2. International Journal of Hydrogen Energy 38:10739–45. doi:10.1016/j.ijhydene.2013.02.131.
  • Xie, G., K. Zhang, B. Guo, Q. Liu, L. Fang, and J. R. Gong. 2013. Graphene-based materials for hydrogen generation from light-driven water splitting. Advanced Materials 25:3820–39. doi:10.1002/adma.201301207.
  • Xie, M. Y., K. Y. Su, X. Y. Peng, R. J. Wu, M. Chavali, and W. C. Chang. 2016. Hydrogen production by photocatalytic water-splitting on Pt-doped TiO2-ZnO under visible light. Journal of the Taiwan Institute of Chemical Engineers 70 (2017):16–167.
  • Yang, Y., E. Liu, H. Dai, L. Kang, H. Wu, J. Fan, X. Hu, and H. Liu. 2014. Photocatalytic activity of Ag-TiO2-graphene ternary nanocomposites and application in hydrogen evolution by water splitting. International Journal of Hydrogen Energy 39:7664–71. doi:10.1016/j.ijhydene.2013.09.109.
  • Yao, Z., L. Wang, Y. Zhang, Z. Yu, and Z. Jiang. 2014. Carbon nanotube modified Zn0.83Cd0.17S nanocomposite photocatalyst and its hydrogen production under visible-light. International Journal of Hydrogen Energy 39:15380–86. doi:10.1016/j.ijhydene.2014.07.164.
  • Zhang, G., W. Zhang, D. Minakata, Y. S. Chen, and J. Crittenden. 2013. Stability of an H2 producing photocatalyst (Ru/(CuAg)0.15In0.3Zn1.4S2) in aqueous solution under visible light irradiation. International Journal of Hydrogen Energy 38:1286–96. doi:10.1016/j.ijhydene.2012.11.033.
  • Zhu, C., C. Lin, Y. Fu, J. Gao, H. Huang, Y. Liu, and Z. Kang. 2018. Construction of CDs/CdS photocatalysts for stable and efficient hydrogen production in water and seawater. Applied Catalysis B: Environmental 242 (2019):178–185.
  • Zhu, Z., C. T. Kao, B. H. Tang, W. C. Chang, and R. J. Wu. 2016. Efficient hydrogen production by photocatalytic water-splitting using Pt-doped TiO2 hollow spheres under visible light. Ceramics International 42:6749–54. doi:10.1016/j.ceramint.2016.01.047.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.