133
Views
6
CrossRef citations to date
0
Altmetric
Articles

Value adding industrial solid wastes: impact of industrial solid wastes upon copper removal performance of synthesized low cost adsorbents

, &
Pages 835-848 | Received 15 Aug 2018, Accepted 21 Jan 2019, Published online: 03 Apr 2019

References

  • Agarwal, S., and A. Rani. 2017. Adsorption of resorcinol from aqueous solution onto CTAB/NaOH/flyash composites: Equilibrium, kinetics and thermodynamics. Journal of Environmental Chemical Engineering 5:526–38. doi:10.1016/j.jece.2016.11.035.
  • Ahmad, M., A. U. Rajapaksha, J. E. Lim, M. Zhang, N. Bolan, D. Mohan, M. Vithanage, S. S. Lee, and Y. S. Ok. 2014. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 99:19–33. doi:10.1016/j.chemosphere.2013.10.071.
  • Bogusz, A., P. Oleszczuk, and R. Dobrowolski. 2015. Application of laboratory prepared and commercially available biochars to adsorption of cadmium, copper and zinc ions from water. Bioresource Technology 196:540–49. doi:10.1016/j.biortech.2015.08.006.
  • Chen, B., Z. Chen, and S. Lv. 2011. A novel magnetic biochar efficiently sorbs organic pollutants and phosphate. Bioresource Technology 102:716–23. doi:10.1016/j.biortech.2010.08.067.
  • Cibati, A., B. Foereid, A. Bissessur, and S. Hapca. 2017. Assessment of Miscanthus × giganteus derived biochar as copper and zinc adsorbent: Study of the effect of pyrolysis temperature, pH and hydrogen peroxide modification. Journal of Cleaner Production 162:1285–96. doi:10.1016/j.jclepro.2017.06.114.
  • Deng, N., A. W. Zhang, Q. Zhang, G. S. He, W. Q. Cui, G. Y. Chen, and C. Song. 2017. Simulation analysis and ternary diagram of municipal solid waste pyrolysis and gasification based on the equilibrium model. Bioresource Technology 235:371–79. doi:10.1016/j.biortech.2017.03.072.
  • Ding, Z., X. Hu, Y. Wan, S. Wang, and B. Gao. 2016. Removal of lead, copper, cadmium, zinc, and nickel from aqueous solutions by alkali-modified biochar: Batch and column tests. Journal of Industrial and Engineering Chemistry 33:239–45. doi:10.1016/j.jiec.2015.10.007.
  • Du, M., L. Chen, Y. Li, and Y. Dou. 2012. Modification of coal gangue and adsorption of ammonia nitrogen in rare earth production wastewater. Environmental Protection of Chemical Industry 32:377–80.
  • Fischer, L., T. Falta, G. Koellensperger, A. Stojanovic, D. Kogelnig, M. Galanski, R. Krachler, B. K. Keppler, and S. Hann. 2011. Ionic liquids for extraction of metals and metal containing compounds from communal and industrial waste water. Water Research 45:4601–14. doi:10.1016/j.watres.2011.06.011.
  • Frišták, V., W. Friesl-Hanl, A. Wawra, M. Pipíška, and G. Soja. 2015. Effect of biochar artificial ageing on cd and cu sorption characteristics. Journal of Geochemical Exploration 159 (7):178–84. doi:10.1016/j.gexplo.2015.09.006.
  • Gao, M., Q. Ma, Q. Lin, J. Chang, and H. Ma. 2017. Fabrication and adsorption properties of hybrid fly ash composites. Applied Surface Science 396:400–11. doi:10.1016/j.apsusc.2016.10.167.
  • Giménez, J., M. María, J. Pablo, M. Rovira, and L. Duro. 2007. Arsenic sorption onto natural hematite, magnetite, and goethite. Journal of Hazard Materials 141:575–80. doi:10.1016/j.jhazmat.2006.07.020.
  • Gupta, M., H. Gupta, and D. S. Kharat. 2018. Adsorption of Cu(II) by low cost adsorbents and the cost analysis ☆. Environmental Technology & Innovation 10:91–101. doi:10.1016/j.eti.2018.02.003.
  • Gupta, V. K., and I. Ali. 2004. Removal of lead and chromium from wastewater using bagasse fly ash-a sugar industry waste. Journal of Colloid and Interface Science 271:321–28. doi:10.1016/j.jcis.2003.11.007.
  • Harvey, O. R., B. E. Herbert, R. D. Rhue, and L. J. Kuo. 2011. Metal interactions at the biochar-water interface: Energetics and structure-sorption relationships elucidated by flow adsorption microcalorimetry. Environmental Science & Technology 45 (13):5550–56. doi:10.1021/es104401h.
  • Jiang, S., L. Huang, T. A. H. Nguyen, Y. S. Ok, V. Rudolph, H. Yang, and H. D. Zhang. 2016. Copper and zinc adsorption by softwood and hardwood biochars under elevated sulphate-induced salinity and acidic pH conditions. Chemosphere 142:64–71. doi:10.1016/j.chemosphere.2015.06.079.
  • Jin, H., M. U. Hanif, S. Capareda, Z. Chang, H. Huang, and Y. Ai. 2016. Copper(II) removal potential from aqueous solution by pyrolysis biochar derived from anaerobically digested algae-dairy-manure and effect of KOH activation. Journal of Environmental Chemical Engineering 4:365–72. doi:10.1016/j.jece.2015.11.022.
  • Jin, H., S. Capareda, Z. Chang, J. Gao, Y. Xu, and J. Zhang. 2014. Biochar pyrolytically produced from municipal solid wastes for aqueous As(V) removal: Adsorption property and its improvement with KOH activation. Bioresource Technology 169:622–29. doi:10.1016/j.biortech.2014.06.103.
  • Kalavathy, M. H., T. Karthikeyan, S. Rajgopal, and L. R. Miranda. 2005. Kinetic and isotherm studies of Cu(II) adsorption onto H3PO4-activated rubber wood sawdust. Journal of Colloid and Interface Science 292:354–62. doi:10.1016/j.jcis.2005.05.087.
  • Kim, J., and M. M. Benjamin. 2004. Modeling a novel ion exchange process for arsenic and nitrate removal. Water Research 38:2053–62.
  • Kumar, S. 2012. Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process. Journal of Environmental Management 109 (17):61–69. doi:10.1016/j.jenvman.2012.04.047.
  • Li, B., L. Yang, C. Wang, Q. Zhang, Q. Liu, Y. Li, and R. Xiao. 2017a. Adsorption of Cd(II) from aqueous solutions by rape straw biochar derived from different modification processes. Chemosphere 175:332–40. doi:10.1016/j.chemosphere.2017.02.061.
  • Li, G., B. Wang, Q. Sun, W. Q. Xu, and Y. Han. 2017b. Adsorption of lead ion on amino-functionalized fly-ash-based SBA-15 mesoporous molecular sieves prepared via two-step hydrothermal method. Microporous and Mesoporous Materials 252:105–15. doi:10.1016/j.micromeso.2017.06.004.
  • Li, H., G. Huang, C. An, and W. Zhang. 2012. Kinetic and equilibrium studies on the adsorption of calcium lignosulfonate from aqueous solution by coal fly ash. Chemical Engineering Journal 200–202:275–82. doi:10.1016/j.cej.2012.06.051.
  • Mandal, B. K., and K. T. Suzuki. 2002. Arsenic round the world: A review. Talanta 58:201–35.
  • Mohan, D., A. Sarswat, Y. S. Ok, and C. U. Pittman. 2014. Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent–A critical review. Bioresource Technology 160:191–202. doi:10.1016/j.biortech.2014.01.120.
  • Mohan, D., and C. U. Pittman. 2007. Arsenic removal from water/wastewater using adsorbents—A critical review. Journal of Hazard Materials 142:1–53. doi:10.1016/j.jhazmat.2007.01.006.
  • Mohsen-Nia, M., P. Montazeri, and H. Modarress. 2007. Removal of Cu2+ and Ni2+ from wastewater with a chelating agent and reverse osmosis processes. Desalination 217:276–81. doi:10.1016/j.desal.2006.01.043.
  • Mondal, S., K. Aikat, and G. Halder. 2016. Biosorptive uptake of ibuprofen by chemically modified Partheniumhysterophorus derived biochar: Equilibrium, kinetics, thermodynamics and modelling. Ecological Engineering 92:158–72. doi:10.1016/j.ecoleng.2016.03.022.
  • Ostermann, A., Y. He, J. Siemens, G. Welp, A. Heuser, F. Wombacher, C. Münker, Q. Xue, X. Lin, and W. Amelung. 2015. Tracing copper derived from pig manure in calcareoussoils and soil leachates by 65 Cu labeling. Environmental Science & Technology 49 (7):4609–17. doi:10.1021/es504945e.
  • Park, J., I. Hung, Z. Gan, O. J. Rojas, K. H. Lim, and S. Park. 2013. Activated carbon from biochar: Influence of its physicochemical properties on the sorption characteristics of phenanthrene. Bioresource Technology 149:383–89. doi:10.1016/j.biortech.2013.09.085.
  • Park, J. H., J. J. Wang, S. H. Kim, J. S. Cho, S. W. Kang, R. D. Delaune, K. J. Han, and D. C. Seo. 2017. Recycling of rice straw through pyrolysis and its adsorption behaviors for Cu and Zn ions in aqueous solution. Colloids and Surfaces A Physicochemical & Engineering Aspects 533:330–37. doi:10.1016/j.colsurfa.2017.08.041.
  • Park, S. H., H. J. Cho, C. Ryu, and Y. Park. 2016. Removal of copper(II) in aqueous solution using pyrolytic biochars derived from red macroalga Porphyra tenera. Journal of Industrial and Engineering Chemistry 36:314–19. doi:10.1016/j.jiec.2016.02.021.
  • Pellera, F., A. Giannis, D. Kalderis, K. Anastasiadou, R. Stegmann, J. Wang, and E. Gidarakos. 2012. Adsorption of Cu(II) ions from aqueous solutions on biochars prepared from agricultural by-products. Journal of Environmental Management 96:35–42. doi:10.1016/j.jenvman.2011.10.010.
  • Pepper, R. A., S. J. Couperthwaite, and G. J. Millar. 2018. Value adding red mud waste: Impact of red mud composition upon fluoride removal performance of synthesised akaganeite sorbents. Journal of Environmental Chemical Engineering 6:2063–74. doi:10.1016/j.jece.2018.02.048.
  • Pezoti, O., A. L. Cazetta, K. C. Bedin, L. S. Souza, A. C. Martins, T. L. Silva, O. O. Santos Júnior, J. V. Visentainer, and V. C. Almeida. 2016. NaOH-activated carbon of high surface area produced from guava seeds as a high-efficiency adsorbent for amoxicillin removal: Kinetic, isotherm and thermodynamic studies. Chemical Engineering Journal 288:778–88. doi:10.1016/j.cej.2015.12.042.
  • Pizarro, J., X. Castillo, S. Jara, C. Ortiz, P. Navarro, H. Cid, H. Rioseco, D. Barros, and N. Belzile. 2015. Adsorption of Cu2+ on coal fly ash modified with functionalized mesoporous silica. Fuel 156:96–102. doi:10.1016/j.fuel.2015.04.030.
  • Polat, H., and D. Erdogan. 2007. Heavy metal removal from wastewaters by ion flotation. Journal of Hazard Materials 148:267–73. doi:10.1016/j.jhazmat.2007.02.013.
  • Poole, K. 2017. At the nexus of antibiotics and metals: The impact of Cu and Zn on antibiotic activity and resistance. Trends in Microbiology 25 (10):820–32. doi:10.1016/j.tim.2017.04.010.
  • Prasad, M., H. Xu, and S. Saxena. 2008. Multi-component sorption of Pb(II), Cu(II) and Zn(II) onto low-cost mineral adsorbent. Journal of Hazard Materials 154:221–29. doi:10.1016/j.jhazmat.2007.10.019.
  • Runtti, H., S. Tuomikoski, T. Kangas, U. Lassi, T. Kuokkanen, and J. Rämö. 2014. Chemically activated carbon residue from biomass gasification as a sorbent for iron(II), copper(II) and nickel(II) ions. Journal of Water Process Engineering 4:12–24. doi:10.1016/j.jwpe.2014.08.009.
  • Singhal, A., B. P. Gangwar, and J. M. Gayathry. 2017. CTAB modified large surface area nanoporous geopolymer with high adsorption capacity for copper ion removal. Applied Clay Science 150:106–14. doi:10.1016/j.clay.2017.09.013.
  • Son, E. B., K. M. Poo, J. S. Chang, and K. J. Chae. 2018. Heavy metal removal from aqueous solutions using engineered magnetic biochars derived from waste marine macro-algal biomass. Science of the Total Environment 615:161–68. doi:10.1016/j.scitotenv.2017.09.171.
  • Taheran, M., M. Naghdi, S. K. Brar, E. J. Knystautas, M. Verma, A. A. Ramirez, R. Y. Surampalli, and J. R. Valero. 2016. Adsorption study of environmentally relevant concentrations of chlortetracycline on pinewood biochar. Science of the Total Environment 571:772–77. doi:10.1016/j.scitotenv.2016.07.050.
  • Tan, X., Y. Liu, G. Zeng, X. Wang, X. Hu, Y. Gu, and Z. Yang. 2015. Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere 125:70–85. doi:10.1016/j.chemosphere.2014.12.058.
  • Wang, H., B. Gao, S. Wang, J. Fang, Y. Xue, and K. Yang. 2015. Removal of Pb(II), Cu(II), and Cd(II) from aqueous solutions by biochar derived from KMnO4 treated hickory wood. Bioresource Technology 197:356–62. doi:10.1016/j.biortech.2015.08.132.
  • Wang, R., J. Zhang, Q. Sui, H. Wan, J. Tong, M. Chen, Y. Wei, and D. Wei. 2016. Effect of red mud addition on tetracycline and copper resistance genes and microbial community during the full scale swine manure composting. Bioresource Technology 216:1049–57. doi:10.1016/j.biortech.2016.06.044.
  • Wu, X., H. Ma, L. Zhang, and F. Wang. 2012. Adsorption properties and mechanism of mesoporous adsorbents prepared with fly ash for removal of Cu(II) in aqueous solution. Applied Surface Science 261:902–07. doi:10.1016/j.apsusc.2012.08.122.
  • Xiao, Y., Y. Xue, F. Gao, and A. Mosa. 2017. Sorption of heavy metal ions onto crayfish shell biochar: Effect of pyrolysis temperature, pH and ionic strength. Journal of the Taiwan Institute of Chemical Engineers 80:114–21. doi:10.1016/j.jtice.2017.08.035.
  • Xue, Y., S. Wu, and M. Zhou. 2013. Adsorption characterization of Cu(II) from aqueous solution onto basic oxygen furnace slag. Chemical Engineering Journal 231:355–64. doi:10.1016/j.cej.2013.07.045.
  • Yi, S., B. Gao, Y. Sun, J. Wu, X. Shi, B. Wu, and X. Hu. 2016. Removal of levofloxacin from aqueous solution using rice-husk and wood-chip biochars. Chemosphere 150:694–701. doi:10.1016/j.chemosphere.2015.12.112.
  • Zhang, M., and B. Gao. 2013. Removal of arsenic, methylene blue, and phosphate by biochar/AlOOH nanocomposite. Chemical Engineering Journal 226:286–92. doi:10.1016/j.cej.2013.04.077.
  • Zhang, M., B. Gao, S. Varnoosfaderani, A. Hebard, Y. Yao, and M. Inyang. 2013. Preparation and characterization of a novel magnetic biochar for arsenic removal. Bioresource Technology 130:457–62. doi:10.1016/j.biortech.2012.11.132.
  • Zhou, C., G. Liu, Z. Xu, H. Sun, and P. K. S. Lam. 2017. The retention mechanism, transformation behavior and environmental implication of trace element during co-combustion coal gangue with soybean stalk. Fuel 189:32–38. doi:10.1016/j.fuel.2016.10.093.
  • Zhou, Y., B. Gao, A. R. Zimmerman, H. Chen, M. Zhang, and X. Cao. 2014. Biochar-supported zerovalent iron for removal of various contaminants from aqueous solutions. Bioresource Technology 152:538–42. doi:10.1016/j.biortech.2013.11.021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.