683
Views
24
CrossRef citations to date
0
Altmetric
Articles

Co-pyrolysis of seaweeds with waste plastics: modeling and simulation of effects of co-pyrolysis parameters on yields, and optimization studies for maximum yield of enhanced biofuels

, , , , , & show all
Pages 954-978 | Received 22 Oct 2018, Accepted 08 Feb 2019, Published online: 08 Apr 2019

References

  • Abnisa, F., and W. M. A. W. Daud. 2014. A review on co-pyrolysis of biomass: An optional technique to obtain a high-grade pyrolysis oil. Energy Conversion and Management 87:71–85. doi:10.1016/j.enconman.2014.07.007.
  • Abnisa, F., W. M. A. W. Daud, S. Ramalingam, M. Naqiuddin, B. M. AzemiJ, and N. Sahu. 2013. Co-pyrolysis of palm shell and polystyrene waste mixtures to synthesis liquid fuel. Fuel 108:311–18. doi:10.1016/j.fuel.2013.02.013.
  • Aslan, N. 2007. Application of response surface methodology and central composite rotatable design for modeling the influence of some operating variables of a multi-gravity separator for coal cleaning. Fuel 86:769–76. doi:10.1016/j.fuel.2006.10.020.
  • Aysu, T., and A. Sanna. 2015. Nannochloropsis algae pyrolysis with ceria-based catalysts for production of high-quality bio-oils. Bioresource Technology 194:108–16. doi:10.1016/j.biortech.2015.07.027.
  • Brebu, M., S. Ucar, C. Vasile, and J. Yanik. 2010. Co-pyrolysis of pine cone with synthetic polymers. Fuel 89:1911–18. doi:10.1016/j.fuel.2010.01.029.
  • Butler, E., G. Devlin, D. Meier, and K. McDonnell. 2013. Fluidised bed pyrolysis of lignocellulosic biomasses and comparison of bio-oil and micropyrolyser pyrolysate by GC/MS-FID. Journal of Analytical and Applied Pyrolysis 103:96–101. doi:10.1016/j.jaap.2012.10.017.
  • Cepeliogullar, O., and A. E. Putun. 2013. Thermal and kinetic behaviors of biomass and plastic wastes in co-pyrolysis. EnergyConversionandManagement 75:263–70. doi:10.1016/j.enconman.2013.06.036.
  • Chen, H., D. Zhou, G. Luo, S. Zhang, and J. Chen. 2015. Macroalgae for biofuels production: Progress and perspectives. Renewable and Sustainable Energy Reviews 47:427–37. doi:10.1016/j.rser.2015.03.086.
  • Chen, W., S. Shi, J. Zhang, M. Chen, and X. Zhou. 2016. Co-pyrolysis of waste newspaper with high-density polyethylene: Synergistic effect and oil characterization. Energy Conversion and Management 112:41–48. doi:10.1016/j.enconman.2016.01.005.
  • Demirbas, A. 2009. Pyrolysis mechanisms of biomass materials. Energy Source Part A 31:1186–93. doi:10.1080/15567030801952268.
  • Gao, K., K. R. Mckinley, and S. K. Gao. 1994. Use of macroalgae for marine biomass production and CO2 remediation: A review. Journal of Applied Phycology 6:45–60. doi:10.1007/BF02185904.
  • Hu, G., J. Li, X. Zhang, and Y. Li. 2017. Investigation of waste biomass co-pyrolysis with petroleum sludge using a response surface methodology. Journal of Environmental Management 192:234–42. doi:10.1016/j.jenvman.2017.01.06.
  • Isahak, W. N. R. W., M. W. M. Hisham, M. A. Yarmo, and T. Y. Hin. 2012. A review on bio-oil production from biomass by using pyrolysis method. Renewable and Sustainable Energy Reviews 16:5910–23. doi:10.1016/j.rser.2012.05.039.
  • Jakab, E., M. Blazso, and O. Faix. 2001. Thermal decomposition of mixtures of vinylpolymers and lignocellulosic materials. Journal of Analytical and Applied Pyrolysis 58–59:49–62. doi:10.1016/S0165-2370(00)00180-7.
  • Jin, Q., X. Wang, S. Li, H. Mikul, T. Besenic, S. Deng, M. Vujanovi, H. Tan, and B. M. Kumfer. 2017. Synergistic effects during co-pyrolysis of biomass and plastic: Gas, tar, soot, char products and thermogravimetric study. Journal of the Energy Institute xxx:1–10. doi:10.1016/j.joei.2017.11.001.
  • John, R. P., G. S. Anisha, K. M. Nampoothiri, and A. Pandey. 2011. Micro and macroalgal biomass: A renewable source for bioethanol. Bioresource Technology 102:186–93. doi:10.1016/j.biortech.2010.06.139.
  • Kebelmann, K., H. Andreas, U. Karsten, and G. Gareth. 2013. Thermo-chemical behaviour and chemical product formation from Polar seaweeds during intermediate pyrolysis. Journal of Analytical and AppliedPyrolysis 104:131–38. doi:10.1016/j.jaap.2013.08.012.
  • Kim, Y. M., H. W. Lee, S. J. Choi, J. K. Jeon, S. H. Park, S. C. Jung, S. C. Kim, and Y. K. Park. 2017. Catalytic co-pyrolysis of polypropylene and Laminaria japonicaover zeolitic materials. International Journal of Hydrogen Energy 42:18434–41. doi:10.1016/j.ijhydene.2017.04.139.
  • Kositkanawuth, K., A. Bhatt, M. Sattler, and B. Dennis. 2017. Renewable energy from waste: Investigation of co-pyrolysis between sargassum macroalgae and polystyrene. Energy & Fuels : An American Chemical Society Journal 31:5088−5096. doi:10.1021/acs.energyfuels.6b03397.
  • Kositkanawuth, K., M. L. Sattler, and B. Dennis. 2014. Pyrolysis of macroalgae and polysytrene: A review. Current Sustainable Renew Energy Reports 1:121–28. doi:10.1007/s40518-014-0020-7.
  • Kositkanawuth, K., M. L. Sattler, and B. Dennis. 2015. Pyrolysis of macroalgae and polysytrene: A review. Current Sustainable Renewable Energy Rep. 1:121–28. doi:10.1007/s40518-014-0020-7.
  • Laresgoiti, F. M. 2000. Chromatographic analysis of the gases obtained in tyre pyrolysis. Journal of Analytical and Applied Pyrolysis 55:43–54. doi:10.1016/S0165-2370(99)00073-X.
  • Lee, H. Y., S. J. Choi, S. H. Park, J. K. Jeon, S. C. Jung, S. H. Joo, and Y. K. Park. 2014. Catalytic conversion of Laminaria japonica over microporous zeolites. Energy 66:2–6. doi:10.1016/j.energy.2013.05.023.
  • Li, D., L. Chen, S. Chen, X. Zhang, F. Chen, and N. Ye. 2012. Comparative evaluation of the pyrolytic and kinetic characteristics of a macroalga (Sargassum thunbergii) and a freshwater plant (Potamogeton crispus). Fuel 96:185–91. doi:10.1016/j.fuel.2012.01.005.
  • Li, J., Y. Yu, X. Li, W. Wang, G. Yu, S. Deng, J. Huang, B. Wang, and Y. Wang. 2015. Maximizing carbon efficiency of petrochemical production from catalytic co-pyrolysis of biomass and plastics using gallium-containing MFI zeolites. Applied Catalysis B: Environmental 172–173:154–64. doi:10.1016/j.apcatb.2015.02.015.
  • Li, S. D., X. L. Chen, A. B. Liu, L. Wang, and G. S. Yu. 2014. Study on co-pyrolysis characteristics of rice straw and Shenfu bituminous coal blends in a fixed bed reactor. Bioresource Technoology 155:252–57. doi:10.1016/j.biortech.2013.12.119.
  • Lu, P., Q. Huang, A. C. Bourtsalas, Y. Chi, and J. Yan. 2018. Synergistic effects on char and oil produced by the co-pyrolysis of pine wood, polyethylene and polyvinyl chloride. Fuel 230:359–67. doi:10.1016/j.fuel.2018.05.072.
  • Martínez, J. D., A. Veses, A. M. Mastral, R. Murillo, M. V. Navarro, N. Puy, A. Artigue, J. Bartrolí, and T. García. 2013. Co-pyrolysis of biomass with waste tyres: Upgrading of liquid bio-fuel. Fuel Processing Technology 119:263–71. doi:10.1016/j.fuproc.2013.11.015.
  • Mei-Yu, H., and L. Bao-Xia. 2016. Co-pyrolysis characteristics of the sugarcane bagasse and Enteromorpha prolifera. Energy Conversion and Management 120:238–46. doi:10.1016/j.enconman.2016.04.072.
  • Montgomery, D. C. 2006. Design and analysis of experiments, 6th ed. New York, USA: John Wiley & Sons. ISBN: 978-1-118-14692-7.
  • Nkosi, N., and E. Muzenda. 2014. A review and discussion of waste tyre pyrolysis and derived products. Proceedings of the World Congress on Engineering 2014 Vol II, WCE 2014, July 2-4, London, U.K. ISBN: 978-988-19253-5-0. https://core.ac.uk/display/43602726.
  • Oyedun, A. O., C. Z. Tee, S. Hanson, and C. W. Hui. 2014. Thermogravimetric analysis of the pyrolysis characteristics and kinetics of plastics and biomass blends. Fuel Processing Technology 128:471–81. doi:10.1016/j.fuproc.2014.08.010.
  • Paradela, F., F. Pinto, I. Gulyurtlu, I. Cabrita, and N. Lapa. 2009. Study of the co-pyrolysis of biomass and plastic wastes. Clean Technologies and Environmental Policy 11:115–22. doi:10.1007/s10098-008-0176-1.
  • Patwardhan P. R., D.L., Dalluge, B.H., Shanks and R.C, Brown. 2011. Distinguishing primary and secondary reactions of cellulose pyrolysis. Bioresource Technology 102 (8):5265–69. doi:10.1016/j.biortech.2011.02.018.
  • Rojas-Mayorga, C. K., A. Bonilla-Petriciolet, I. A. Aguayo-Villarreal, V. Hernández-Montoyaa, M. R. Moreno-Virgena, R. Tovar-Gómez, and M. A. Montes-Morán. 2013. Optimization of pyrolysis conditions and adsorption properties of bone char for fluoride removal from water. Journal of Analytical and Applied Pyrolysis 104:10–18. doi:10.1016/j.jaap.2013.09.018.
  • Ross, A. B., J. M. Jones, M. L. Kubacki, and T. Bridgeman. 2008. Classification of macroalgae as fuel and its thermochemical behavior. Bioresource Technology 99:6494–504. doi:10.1016/j.biortech.2007.11.036.
  • Samanya, J., A. Hornung, A. Apfelbacher, and P. Vale. 2012. Characteristics of the upper phase of bio-oil obtained from co-pyrolysis of sewage sludge with wood, rapeseed and straw. Journal Of. Analytical and Applied. Pyrolysis 94::120–25. doi:10.1016/j.biortech.2007.11.036.
  • Siddiqui, M. T. H., S. Nizamuddin, N. M. Mubarak, K. Shirin, M. Aijaz, M. Hussain, and H. A. Baloch. 2017. Characterization and process optimization of biochar produced using novel biomass, waste pomegranate peel: A response surface methodology approach. Waste and Biomass Valorization 1–12. doi:10.1007/s12649-017-0091-y.
  • Song, Y., A. Tahmasebi, and J. Yu. 2014. Co-pyrolysis of pine sawdust and lignite in a thermogravimetric analyzer and a fixed-bed reactor. Bioresource Technology 174:204–11. doi:10.1016/j.biortech.2014.10.027.
  • Uzoejinwa, B. B., X. He, S. Wang, A. Abomohra, Y. Hu, Z. He, and Q. Wang. 2018b. Co-pyrolysis of macroalgae and lignocellulosic biomass: Synergistic effect, optimization studies, modeling, and simulation of effects of co-pyrolysis parameters on yields. Journal of Thermal Analysis and Calorimetry. doi:10.1007/s10973-018-7834-2.
  • Uzoejinwa, B. B., X. He, S. Wang, A. Abomohra, Y. Hu, and Q. Wang. 2018a. Co-pyrolysis of biomass and waste plastics as a thermochemical conversion technology for high-grade biofuel production: Recent progress and future directions elsewhere worldwide.Energy. Conversion and Management 163:468–92. doi:10.1016/j.enconman.2018.02.004.
  • Wang, S., Y. Hu, B. B. Uzoejinwa, B. Cao, Z. He, Q. Wang, and S. Xu. 2017a. Pyrolysis mechanisms of typical seaweed polysaccharides. Journal of Analytical and Applied Pyrolysis 124:373–83. doi:10.1016/j.jaap.2016.12.005.
  • Wang, S., X. M. Jiang, X. Han, and H. Wang. 2008. Fusion characteristic study on seaweed biomass ash. Energy & Fuels : An American Chemical Society Journal 22:2229–35. doi:10.1021/ef800128k.
  • Wang, S., B. B. Uzoejinwa, A. Abomohra, Q. Wang, Z. He, Y. Feng, B. Zhang, and C. W. Hui. 2018. Characterization and pyrolysis behavior of the green microalgaMicractinium conductrixgrown in lab-scale tubular photobioreactor using Py-GC/MS and TGA/MS. Journal of Analytical and Applied Pyrolysis xxx (xxxx):xxx–xxx. doi:10.1016/j.jaap.2018.08.019.
  • Wang, S., Q. Wang, Y. M. Hu, S. N. Xu, Z. X. He, and H. S. Ji. 2015. Study on the synergistic co-pyrolysis behaviors of mixed rice husk and two types of seaweed by a combined TG-FTIR technique. Journal of Analytical and Applied Pyrolysis 114:109–18. doi:10.1016/j.jaap.2015.05.008.
  • Wang, S., X. Z. Xia, Y. Hu, Z. He, B. B. Uzoejinwa, Q. Wang, B. Cao, and S. Xu. 2017b. Co-pyrolysis mechanism of seaweed polysaccharides and cellulose based on macroscopic experiments and molecular simulations. Bioresource Technology 228 (2017):305–14. doi:10.1016/j.biortech.2016.12.004.
  • Wargacki A. J., E. Leonard, M. N. Win, D. D. Regitsky, C. N. S. Santos, P. B. Kim. 2012. An engineered microbial platform for direct biofuel production from brown macroalgae. Science 335::308–13. doi:10.1126/science.1214547.
  • Wei, N. J., Quarterman, and Y. S. Jin. 2013. Marine macroalgae: An untapped resource for producing fuels and chemicals. Trends in Biotechnology 31:70–77. doi:10.1016/j.tibtech.2012.10.009.
  • Xue, Y., S. Zhou, R. C. Brown, A. Kelkar, and X. Bai. 2015. Fast pyrolysis of biomass and waste plastic in a fluidized bed reactor. Fuel 156:40–46. doi:10.1016/j.fuel.2015.04.033.
  • Xueyong, R., J. Gou, W. Wang, Q. Li, J. Chung, and B. Li. 2013. Optimization of bark fast pyrolysis for the production of phenol-rich bio-oil. BioResources 8 (4):6481–92. https://bioresources.cnr.ncsu.edu/wp-content/uploads/2016/06/.
  • Yanik, J., R. Stahl, N. Troeger, and A. Sinag. 2013. Pyrolysis of algal biomass. Journal of Analytical and Applied Pyrolysis 103:134–41. doi:10.1016/j.fuel.2015.04.033.
  • Yi, S., S. B. Yi, Q. Z. Su, and Y. Wan. 2010. Application of response surface methodology and central composite rotatable design in optimizing the preparation conditions of vinyltriethoxysilane modified silicalite/polydimethylsiloxane hybrid pervaporation membranes. Separation and Purification Technology 71:252–62. doi:10.1016/j.seppur.2009.12.005.
  • Zhang, S., Q. Dong, L. Zhang, Y. Xiong, X. Liu, and S. Zhu. 2015. Effects of water washing and torrefaction pretreatments on rice husk pyrolysis by microwave heating. Bioresource Technology 193:442–48. doi:10.1016/j.biortech.2015.06.142.
  • Zhiquan, H., Y. Zheng, F. Yan, B. Xiao, and S. Liu. 2013. Bio-oil production through pyrolysis of blue-green algae blooms (BGAB): Product distribution and bio-oil characterization. Energy 52:119–25. doi:10.1016/j.energy.2013.01.059:.
  • Zuo, W., B. Jin, Y. Huang, and Y. Sun. 2014. Characterization of top phase oil obtained from co-pyrolysis of sewage sludge and poplar sawdust. Environmental Science and Pollution Research 21:9717–26. doi:10.1007/s11356-014-2887-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.