142
Views
1
CrossRef citations to date
0
Altmetric
Articles

Effect of seed sludge on the startup of biohydrogen producing reactor with mixed strains of cellulose biomass

ORCID Icon, , , , , & show all
Pages 1206-1216 | Received 15 Nov 2018, Accepted 08 Feb 2019, Published online: 22 Apr 2019

References

  • APHA. 1992. Standard methods for the examination of water and wastewater. 18th ed. Washington D C: American Public Health Association.
  • Ausiello, A., L. Micoli, M. Turco, G. Toscano, C. Florio, and D. Pirozzi. 2017. Biohydrogen production by dark fermentation of Arundo donax using a new methodology for selection of H2-producing bacteria. International Journal of Hydrogen Energy 42 (52):30599–612. doi:10.1016/j.ijhydene.2017.10.021.
  • Bakonyi, P., G. Buitrón, I. Valdez-Vazquez, N. Nemestóthy, and K. Bélafi-Bakó. 2017. A novel gas separation integrated membrane bioreactor to evaluate the impact of self-generated biogas recycling on continuous hydrogen fermentation. Applied Energy 190:813–23. doi:10.1016/j.apenergy.2016.12.151.
  • Cohen, A., V. G. Jm, R. Zoetemeyer, and A. Breure. 1984. Main characteristics and stoichiometric aspects of acidogenesis of soluble carbohydrate containing wastewater. Process Biochemistry 19:228–32.
  • Dessì, P., E. Porca, N. R. Waters, A. M. Lakaniemi, G. Collins, and P. N. L. Lens. 2018. Thermophilic versus mesophilic dark fermentation in xylose-fed fluidised bed reactors: Biohydrogen production and active microbial community. International Journal of Hydrogen Energy 43 (11):5473–85. doi:10.1016/j.ijhydene.2018.01.158.
  • Guo, W. Q., J. Ding, C. Chen, G. L. Cao, X. J. Zhou, and N. Q. Ren. 2013a. Accelerated startup of hydrogen production expanded granular sludge bed with L-cysteine supplementation. Energy 60:94–98. doi:10.1016/j.energy.2013.08.025.
  • Guo, W. Q., S. Yang, J. W. Pang, J. Ding, X. J. Zhou, X. Feng, H. Zheng, and N. Q. Ren. 2013b. Application of low frequency ultrasound to stimulate the bio-activity of activated sludge for enhanced hydrogen production as inoculums. RSC Advances 3:21848–55. doi:10.1039/c3ra41723a.
  • Guo, Y. C., Y. Dai, Y. X. Bai, Y. H. Li, Y. T. Fan, and H. W. Hou. 2014. Co–Producing hydrogen and methane from higher concentration of corn stalk by combining hydrogen fermentation and anaerobic digestion. International Journal of Hydrogen Energy 39:14204–11. doi:10.1016/j.ijhydene.2014.02.089.
  • Han, W., Y. Hu, S. Li, Q. Nie, H. Zhao, and J. Tang. 2016. Effect of organic loading rate on dark fermentative hydrogen production in the continuous stirred tank reactor and continuous mixed immobilized sludge reactor from waste pastry hydrolysate. Waste Management (New York, NY) 58:335–40. doi:10.1016/j.wasman.2016.09.019.
  • Jha, P., E. B. G. Kana, and S. Schmidt. 2017. Can artificial neural network and response surface methodology reliably predict hydrogen production and cod removal in an uasb bioreactor? International Journal of Hydrogen Energy 42 (30):18875–83. doi:10.1016/j.ijhydene.2017.06.063.
  • Khan, M. A., H. H. Ngo, W. Guo, Y. Liu, X. Zhang, J. Guo, S. W. Chang, D. D. Nguyen, and J. Wang. 2018. Biohydrogen production from anaerobic digestion and its potential as renewable energy. Renewable Energy 129:754–68. doi:10.1016/j.renene.2017.04.029.
  • Kirli, B., and I. K. Kapdan. 2016. Selection of microorganism immobilization particle for dark fermentative biohydrogen production by repeated batch operation. Renewable Energy 87:697–702. doi:10.1016/j.renene.2015.11.003.
  • Kisaalita, W. S., and K. L. Pinder. 1987. Acidogenic fermentation of lactose. Biotechnology and Bioengineering 30:88–95. doi:10.1002/bit.260300113.
  • Lin, R., J. Cheng, and J. D. Murphy. 2018. Inhibition of thermochemical treatment on biological hydrogen and methane co-production from algae-derived glucose/glycine. Energy Conversion & Management 158:201–09. doi:10.1016/j.enconman.2017.12.052.
  • Liu, Z., C. Zhang, L. Wang, J. He, B. Li, Y. Zhang, and X.-H. Xing. 2015. Effects of furan derivatives on biohydrogen fermentation from wet steam-exploded cornstalk and its microbial community. Bioresource Technology 175:152–59. doi:10.1016/j.biortech.2014.10.067.
  • Maaroff, R. M., J. M. Jahim, A. M. Azahar, P. M. Abdul, M. S. Masdar, D. Nordin, and M. A. A. Nasir. 2019. Biohydrogen production from palm oil mill effluent (POME) by two stage anaerobic sequencing batch reactor(ASBR) system for better utilization of carbon sources in POME. International Journal of Hydrogen Energy 44 (6):3395–406. doi:10.1016/j.ijhydene.2018.06.013 44 3395-3406
  • Mohd Atiqueuzzaman, K., H. H. Ngo, W. Guo, Y. Liu, X. Zhang, J. Guo, S. W. Chang, D. D. Nguyen, and J. Wang. 2018. Biohydrogen production from anaerobic digestion and its potential as renewable energy. Renewable Energy 129:754-768. doi:10.1016/j.renene.2017.04.029
  • Nkemka, V. N., B. Gilroyed, J. Yanke, R. Gruninger, D. Vedres, T. Mcallister, and X. Hao. 2015. Bioaugmentation with an anaerobic fungus in a two-stage process for biohydrogen and biogas production using corn silage and cattail. Bioresource Technology 185:79–88. doi:10.1016/j.biortech.2015.02.100.
  • Oliveira, A. C. D. M., M. S. D. Santos, L. M. S. Brandão, I. T. F. D. Resende, I. M. Leo, E. S. Morillo, R. M. N. Yerga, J. L. G. Fierro, S. Egues, and R. T. Figueiredo. 2017. The effect of cellulose loading on the photoactivity of cellulose-TiO 2 hybrids for hydrogen production under simulated sunlight. International Journal of Hydrogen Energy 42:28747–54. doi:10.1016/j.ijhydene.2017.09.022.
  • Pachiega, R., I. K. Sakamoto, M. B. Varesche, R. R. Hatanaka, J. E. D. Oliveira, and S. I. Maintinguer. 2018. Obtaining and characterization of mesophilic bacterial consortia from tropical sludges applied on biohydrogen production. Waste & Biomass Valorization 5:1–10.
  • Palomobriones, R., E. Trably, N. E. LópezLozano, L. B. Celis, H. O. MéndezAcosta, N. Bernet, and E. Razo-Flores. 2018. Hydrogen metabolic patterns driven by clostridium-streptococcus community shifts in a continuous stirred tank reactor. Applied Microbiology & Biotechnology 102 (5):2465–75. doi:10.1007/s00253-018-8737-7.
  • Patel, A. K., A. Debroy, S. Sharma, R. Saini, A. Mathur, R. Gupta, and D. K. Tuli. 2015. Biohydrogen production from a novel alkalophilic isolate clostridium sp iodb-o3. Bioresource Technology 175 (175):291–97. doi:10.1016/j.biortech.2014.10.110.
  • Phanduang, O., S. Lunprom, A. Salakkam, and A. Reungsang. 2017. Anaerobic solid-state fermentation of bio-hydrogen from microalgal Chlorella sp biomass. International Journal of Hydrogen Energy 42:9650–59. doi:10.1016/j.ijhydene.2017.01.084.
  • Ren, N., D. Zhao, X. Chen, and Z. Li. 2002. Mechanism and controlling strategy of the production and accumulation of propionic acid for anaerobic wastewater treatment. Science in China(Series B) 45:319–27. doi:10.1360/02yb9041.
  • Ren, N., T. Xie, and D. Xing. 2009. Composition of extracellular polymeric substances influences the autoaggregation capability of hydrogen-producing bacterium Ethanoligenens harbinense. Bioresou Technol 100:5109–13. doi:10.1016/j.biortech.2009.05.021.
  • Salma, A. A. R., D. Kubendran, M. Yuvarani, D. Thiruselvi, T. Amudha, P. Karthik, and S. Sivanesan. 2018. Enhanced biohydrogen production from leather fleshing waste co-digested with tannery treatment plant sludge using anaerobic hydrogenic batch reactor. Energy Sources Part A Recovery Utilization & Environmental Effects 40 (5):586–93. doi:10.1080/15567036.2018.1435754.
  • Shaterzadeh, M., and S. A. Ataei. 2017. The effects of temperature, initial pH, and glucose concentration on biohydrogen production from Clostridium acetobutylicum. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 39 (11):1118–23. doi:10.1080/15567036.2017.1297875.
  • Sivagurunathan, P., G. Kumar, T. Kobayashi, X. Kaiqin, S.-H. Kim, D. D. Nguyen, and S. W. Chang. 2018. Co-digestion of untreated macro and microalgal biomass for biohydrogen production: Impact of inoculum augmentation and microbial insights. International Journal of Hydrogen Energy 43:11484–92. doi:10.1016/j.ijhydene.2018.02.193.
  • Srivastava, N., P. K. Mishra, D. Kushwaha, M. Srivastava, P. K. Mishra, P. W. Ramteke, and P. K. Mishra. 2017. Efficient dark fermentative hydrogen production from enzyme hydrolyzed rice straw by clostridium pasteurianum (mtcc116). Bioresource Technology 238:552–58. doi:10.1016/j.biortech.2017.04.077.
  • Tao, S., Z. Lei, G. Lingfang, L. Wenzong, W. Guofeng, W. Jieting, and A. Wang. 2018. Enhanced biohydrogen production from nutrient-free anaerobic fermentation medium with edible fungal pretreated rice straw. RSC Advances 8 (41):22924–30. doi:10.1039/C8RA03361G.
  • Wang, H. Y., Y. Tao, D. W. Gao, G. Liu, C. H. Chen, N. Q. Ren, J. B. van Lier, and M. de Kreuk. 2015. Microbial population dynamics in response to increasing loadings of pre-hydrolyzed pig manure in an expanded granular sludge bed. Water Research 87:29–37. doi:10.1016/j.watres.2015.09.008.
  • Xin, S., X. Qingli, L. Lifang, and Y. Yongjie. 2017. Hydrogen production by glycerol reforming in a fixed-bed reactor. Energy Sources. Part A: Recovery, Utilization, and Environmental Effects 39 (24):2195–202.
  • Xing, D., N. Ren, A. Wang, Q. Li, Y. Feng, and F. Ma. 2008. Continuous hydrogen production of auto-aggregative Ethanoligenens harbinense yuan-3 under non-sterile condition. International Journal of Hydrogen Energy 33:1489–95. doi:10.1016/j.ijhydene.2007.09.038.
  • Yanan, Y., and W. Jianlong. 2018. Pretreatment of macroalgal, laminaria japonica, by combined microwave-acid method for biohydrogen production. Bioresource Technology 268:52–59. doi:10.1016/j.biortech.2018.07.126.
  • Zhang, J., Y. Bai, Y. Fan, and H. Hou. 2016. Improved bio-hydrogen production from glucose by adding a specific methane inhibitor to microbial electrolysis cells with a double anode arrangement. Journal of Bioscience and Bioengineering 122 (4):488–93. doi:10.1016/j.jbiosc.2016.03.016.
  • Ziganshin, A. M., T. Schmidt, Z. Lv, J. Liebetrau, H. H. Richnow, S. Kleinsteuber, and M. Nikolausz. 2016. Reduction of the hydraulic retention time at constant high organic loading rate to reach the microbial limits of anaerobic digestion in various reactor systems. Bioresource Technology 217:62–71. doi:10.1016/j.biortech.2016.01.096.
  • Zoetemeyer, R. J., J. C. van Den Heuvel, and A. Cohen. 1982. pH influence on acidogenic dissimilation of glucose in an anaerobic digestor. Water Research 16:303–11. doi:10.1016/0043-1354(82)90190-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.