324
Views
1
CrossRef citations to date
0
Altmetric
Articles

Experimental and numerical study on the combustion limiting characteristics and design margin of a marine diesel engine

, , , &
Pages 2266-2280 | Received 17 Dec 2018, Accepted 13 Feb 2019, Published online: 09 Apr 2019

References

  • Abbaszadehmosayebi, G., and L. Ganippa. 2014. Characterising Wiebe equation for heat release analysis based on combustion burn factor (C i). Fuel 119:301–07. doi:10.1016/j.fuel.2013.11.006.
  • Basaran, H. U., and O. A. Ozsoysal. 2017. Effects of application of variable valve timing on the exhaust gas temperature improvement in a low-loaded diesel engine. Applied Thermal Engineering 122:759–65. doi:10.1016/j.applthermaleng.2017.04.098.
  • Bedoya, I. D., S. Saxena, F. J. Cadavid, R. W. Dibble, and M. Wissink. 2012. Experimental evaluation of strategies to increase the operating range of a biogas-fueled HCCI engine for power generation. Applied Energy 97:618–28. doi:10.1016/j.apenergy.2012.01.008.
  • Bellis, V. D., S. Marelli, F. Bozza, and M. Capobianco. 2014. 1D simulation and experimental analysis of a turbocharger turbine for automotive engines under steady and unsteady flow conditions. Energy Procedia 45:911–18. doi:10.1016/j.egypro.2014.01.096.
  • Bennett, C., J. F. Dunne, S. Trimby, and D. Richardson. 2017. Engine cylinder pressure reconstruction using crank kinematics and recurrently-trained neural networks. Mechanical Systems and Signal Processing 85:126–44. doi:10.1016/j.ymssp.2016.07.015.
  • Ding, Z. M., W. L. Zhuge, Y. Zhang, H. Chen, R. Martinez-Botas, and M. Yang. 2017. A one-dimensional unsteady performance model for turbocharger turbines. Energy 132:343–53. doi:10.1016/j.energy.2017.04.154.
  • Gharehghani, A., R. Hosseini, M. Mirsalim, and T. F. Yusaf. 2015. A computational study of operating range extension in a natural gas SI engine with the use of hydrogen. International Journal of Hydrogen Energy 40 (17):5967–73. doi:10.1016/j.ijhydene.2015.03.015.
  • Hu, S., H. Wang, C. L. Yang, and Y. Y. Wang. 2017. Burnt fraction sensitivity analysis and 0-D modelling of common rail diesel engine using Wiebe function. Applied Thermal Engineering 115:170–77. doi:10.1016/j.applthermaleng.2016.12.080.
  • Lee, K., S. Cho, N. Kim, and K. Min. 2015. A study on combustion control and operating range expansion of gasoline HCCI. Energy 91:1039–47. doi:10.1016/j.energy.2015.08.031.
  • Marelli, S., C. Carraro, G. Marmorato, G. Zamboni, and M. Capobianco. 2014. Experimental analysis on the performance of a turbocharger compressor in the unstable operating region and close to the surge limit. Experimental Thermal and Fluid Science 53:154–59. doi:10.1016/j.expthermflusci.2013.11.025.
  • Maroteaux, F., and C. Saad. 2013. Diesel engine combustion modeling for hardware in the loop applications: Effects of ignition delay time model. Energy 57:641–50. doi:10.1016/j.energy.2013.03.098.
  • Molina, S., A. García, J. M. Pastor, E. Belarte, and I. Balloul. 2015. Operating range extension of RCCI combustion concept from low to full load in a heavy-duty engine. Applied Energy 143:1–5. doi:10.1016/j.apenergy.2015.01.035.
  • Nikzadfar, K., and A. H. Shamekhi. 2014. Investigating the relative contribution of operational parameters on performance and emissions of a common-rail diesel engine using neural network. Fuel 125:116–27. doi:10.1016/j.fuel.2014.02.021.
  • Parlak, A., Y. Islamoglu, H. Yasar, and A. Egrisogut. 2005. Application of artificial neural network to predict specific fuel consumption and exhaust temperature for a Diesel engine. Applied Thermal Engineering 26 (8):824–28. doi:10.1016/j.applthermaleng.2005.10.006.
  • Sakellaridis, N. F., S. I. Raptotasio, A. K. Antonopoulos, G. C. Mavropoulos, and D. T. Hountalas. 2015. Development and validation of a new turbocharger simulation methodology for marine two stroke diesel engine modelling and diagnostic applications. Energy 91:954–64. doi:10.1016/j.energy.2015.08.049.
  • Tong, L., H. Wang, Z. Q. Zheng, R. Reitz, and M. Yao. 2016. Experimental study of RCCI combustion and load extension in a compression ignition engine fueled with gasoline and PODE. Fuel 181:878–85. doi:10.1016/j.fuel.2016.05.037.
  • Wang, G., W. B. Yu, X. B. Li, Y. Su, R. Yang, and W. Wu. 2019. Experimental and numerical study on the influence of intake swirl on fuel spray and in-cylinder combustion characteristics on large bore diesel engine. Fuel 237:209–21. doi:10.1016/j.fuel.2018.09.156.
  • Wang, Q., L. J. Wei, W. Pan, and C. Yao. 2015. Investigation of operating range in a methanol fumigated diesel engine. Fuel 140:165–69. doi:10.1016/j.fuel.2014.09.067.
  • Wang, Y., Z. W. Zhu, M. Yao, T. Li, W. J. Zhang, and Z. Q. Zheng. 2016. An investigation into the RCCI engine operation under low load and its achievable operational range at different engine speeds. Energy Conversion and Management 124:399–413. doi:10.1016/j.enconman.2016.07.026.
  • Yeliana, Y., C. Cooney, J. Worm, D. J. Michalek, and J. D. Naber. 2011. Estimation of double-Wiebe function parameters using least square method for burn durations of ethanol-gasoline blends in spark ignition engine over variable compression ratios and EGR levels. Applied Thermal Engineering 31 (14):2214–19. doi:10.1016/j.applthermaleng.2011.01.040.
  • Zhang, C., C. Zhang, L. Xue, and Y. Y. Li. 2017. Combustion characteristics and operation range of a RCCI combustion engine fueled with direct injection n-heptane and pipe injection n-butanol. Energy 125:440–47. doi:10.1016/j.energy.2017.02.148.
  • Zhang L. X., F. Z. Feng, J.  Wang, and P. C. Jiang. 2013. Research on the reliability assessment methods based on single performance parameters degradation data for diesel engine. International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering 978–82. doi:10.1109/QR2MSE.2013.6625730.
  • Zhang, W. M., and J. Li. 2013. The experimental study of the plateau performance of the F6L913 diesel engine. Sensors & Transducers 156:187–94.
  • Zhao, R. C., W. H. Li, W. Zhuge, Y. Zhang, and Y. Yin. 2017. Numerical study on steam injection in a turbocompound diesel engine for waste heat recovery. Applied Energy 185:506–17. doi:10.1016/j.apenergy.2016.10.135.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.