283
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Separation performance of mechanical flotation cell and cyclonic microbubble flotation column: in terms of the beneficiation of high-ash coal fines

, , , , &
Pages 2845-2855 | Received 26 Jan 2019, Accepted 27 Apr 2019, Published online: 17 May 2019

References

  • Ahmadi, R., D. A. Khodadadi, M. Abdollahy, and M. Fan. 2014. Nano-microbubble flotation of fine and ultrafine chalcopyrite particles. International Journal of Mining Science and Technology 24 (4):559–66. doi:10.1016/j.ijmst.2014.05.021.
  • Bu, X., G. Evans, G. Xie, Y. Peng, Z. Zhang, C. Ni, and L. Ge. 2017. Removal of fine quartz from coal-series kaolin by flotation. Applied Clay Science 143:437–44. doi:10.1016/j.clay.2017.04.020.
  • Bu, X., G. Xie, Y. Peng, and Y. Chen. 2016. Kinetic modeling and optimization of flotation process in a cyclonic microbubble flotation column using composite central design methodology. International Journal of Mineral Processing 157:175–83. doi:10.1016/j.minpro.2016.11.006.
  • Bu, X., T. Zhang, Y. Chen, G. Xie, and Y. Peng. 2017. Comparative study of conventional cell and cyclonic microbubble flotation column for upgrading a difficult-to-float Chinese coking coal using statistical evaluation. International Journal of Coal Preparation and Utilization 1–17. doi:10.1080/19392699.2017.1359577.
  • Calgaroto, S., K. Q. Wilberg, and J. Rubio. 2014. On the nanobubbles interfacial properties and future applications in flotation. Minerals Engineering 60:33–40. doi:10.1016/j.mineng.2014.02.002.
  • Demirbaş, A. 2002. Demineralization and desulfurization of coals via column froth flotation and different methods. Energy Conversion and Management 43 (7):885–95. doi:10.1016/S0196-8904(01)00088-7.
  • Honaker, R. Q., N. Singh, and B. Govindarajan. 2000. Application of dense-medium in an enhanced gravity separator for fine coal cleaning. Minerals Engineering 13 (4):415–27. doi:10.1016/S0892-6875(00)00023-6.
  • Ishida, N., T. Inoue, M. Miyahara, and K. Higashitani. 2000. Nano bubbles on a hydrophobic surface in water observed by tapping-mode atomic force microscopy. Langmuir 16 (16):6377–80. doi:10.1021/la000219r.
  • Jameson, G. J. 2010. New directions in flotation machine design. Minerals Engineering 23 (11–13):835–41. doi:10.1016/j.mineng.2010.04.001.
  • Jena, M. S., S. K. Biswal, S. P. Das, and P. Reddy. 2008. Comparative study of the performance of conventional and column flotation when treating coking coal fines. Fuel Processing Technology 89:1409–15. doi:10.1016/j.fuproc.2008.06.012.
  • King, R. P., and A. H. Juckes. 1988. Performance of a dense-medium cyclone when beneficiating fine coal. Coal Preparation 5 (3–4):185–210. doi:10.1080/07349348808945565.
  • Lang, X. 2017. Application of cyclonic microbubble flotation column in Xiezhuang coal preparation plant: From laboratory to industrial scale. International Journal of Coal Preparation and Utilization 1–15. doi:10.1080/19392699.2017.1365065.
  • Liang, L., Z. Li, Y. Peng, J. Tan, and G. Xie. 2015. Influence of coal particles on froth stability and flotation performance. Minerals Engineering 81:96–102. doi:10.1016/j.mineng.2015.07.004.
  • Magwai, M. K., and J. Bosman. 2008. The effect of cyclone geometry and operating conditions on spigot capacity of dense medium cyclones. International Journal of Mineral Processing 86 (1):94–103. doi:10.1016/j.minpro.2007.11.005.
  • Ni, C., G. Xie, B. Liu, Y. Peng, J. Sha, and W. Xia. 2015. A design of an inclined froth zone in column flotation device to reduce ash content in clean coal. International Journal of Coal Preparation and Utilization 35 (6):281–94. doi:10.1080/19392699.2015.1019065.
  • Patil, D. P., and B. K. Parekh. 2011. Beneficiation of fine coal using the air table. Coal Preparation 31 (3–4):203–22. doi:10.1080/19392699.2011.574948.
  • Shi, C., R. Ma, and L. Tang. 2008. Applied analysis on practice of FCMC-3000 cyclonic micro-bubble flotation column. Clean Coal Technology 5:002.
  • Sun, Y., G. Xie, Y. Peng, Y. Chen, and G. Ma. 2017. How does high intensity conditioning affect flotation performance? International Journal of Coal Preparation and Utilization 1–15. doi:10.1080/19392699.2017.1316717.
  • Sun, Y., G. Xie, Y. Peng, W. Xia, and J. Sha. 2016. Stability theories of nanobubbles at solid–Liquid interface: A review. Colloids and Surfaces A Physicochemical and Engineering Aspects 495:176–86. doi:10.1016/j.colsurfa.2016.01.050.
  • Tao, X. X., Y. J. Cao, J. Liu, K. Y. Shi, J. Y. Liu, and M. Fan. 2009. Studies on characteristics and flotation of a hard-to-float high-ash fine coal. Procedia Earth and Planetary Science 1 (1):799–806. doi:10.1016/j.proeps.2009.09.126.
  • Tesař, V. 2014. Mechanisms of fluidic microbubble generation Part II: suppressing the conjunctions. Chemical Engineering Science 116:849–56. doi:10.1016/j.ces.2014.06.006.
  • Xia, W., G. Xie, and Y. Peng. 2015. Recent advances in beneficiation for low rank coals. Powder Technology 277:206–21. doi:10.1016/j.powtec.2015.03.003.
  • Y. B., H. E., and J. S. Laskowski. 1995. Dense medium cyclone separation of fine particles Part 2. The effect of medium composition on dense medium cyclone performance. Coal Preparation 16 (1–2):27–49. doi:10.1080/07349349508905240.
  • Yang, X., Y. Zhao, Z. Luo, S. Song, Duan, and Chenlong. 2013. Fine coal dry cleaning using a vibrated gas-fluidized bed. Fuel Processing Technology 106 (2):338–43. doi:10.1016/j.fuproc.2012.08.019.
  • Yoon, R. H., and G. H. Luttrell. 1989. The effect of bubble size on fine particle flotation. Mineral Processing and Extractive Metallurgy Review 5:101–22. doi:10.1080/08827508908952646.
  • Zhang, H., J. Liu, Y. Wang, Y. Cao, Z. Ma, and X. Li. 2013. Cyclonic-static micro-bubble flotation column. Minerals Engineering 45:1–3. doi:10.1016/j.mineng.2013.01.006.
  • Zhang, X. H., A. Quinn, and W. A. Ducker. 2008. Nanobubbles at the interface between water and a hydrophobic solid. Langmuir 24 (9):4756–64. doi:10.1021/la703475q.
  • Zhou, Z. A., Z. Xu, J. A. Finch, H. Hu, and S. R. Rao. 1997. Role of hydrodynamic cavitation in fine particle flotation. International Journal of Mineral Processing 51 (1–4):139–49. doi:10.1016/S0301-7516(97)00026-4.
  • Zhou, Z. A., Z. Xu, J. A. Finch, J. H. Masliyah, and R. S. Chow. 2009. On the role of cavitation in particle collection in flotation–A critical review. II. Minerals Engineering 22 (5):419–33. doi:10.1016/j.mineng.2008.12.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.