961
Views
51
CrossRef citations to date
0
Altmetric
Review

A review of the effect of biodiesel on the corrosion behavior of metals/alloys in diesel engines

ORCID Icon, &
Pages 2923-2943 | Received 29 Oct 2018, Accepted 21 Apr 2019, Published online: 29 May 2019

References

  • Abubakar, H. G., A. S. Abdulkareem, A. Jimoh, O. D. Agbajelola, J. O. Okafor, and E. A. Afolabi. 2016. Optimization of biodiesel production from waste cooking oil. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 38:2355–61. doi:10.1080/15567036.2015.1040899.
  • Aghbashlo, M., S. Hosseinpour, M. Tabatabaei, and A. Dadak. 2017a. Fuzzy modeling and optimization of the synthesis of biodiesel from waste cooking oil (WCO) by a low power, high frequency piezo-ultrasonic reactor. Energy 132:65–78. doi:10.1016/j.energy.2017.05.041.
  • Aghbashlo, M., S. Hosseinpour, M. Tabatabaei, and M. Mojarab Soufiyan. 2019. Multi-objective exergetic and technical optimization of a piezoelectric ultrasonic reactor applied to synthesize biodiesel from waste cooking oil (WCO) using soft computing techniques. Fuel 235:100–12. doi:10.1016/j.fuel.2018.07.095.
  • Aghbashlo, M., M. Tabatabaei, and S. Hosseinpour. 2018a. On the exergoeconomic and exergoenvironmental evaluation and optimization of biodiesel synthesis from waste cooking oil (WCO) using a low power, high frequency ultrasonic reactor. Energy Conversion and Management 164:385–98. doi:10.1016/j.enconman.2018.02.086.
  • Aghbashlo, M., M. Tabatabaei, S. Hosseinpour, Z. Khounani, and S. S. Hosseini. 2017b. Exergy-based sustainability analysis of a low power, high frequency piezo-based ultrasound reactor for rapid biodiesel production. Energy Conversion and Management 148:759–69. doi:10.1016/j.enconman.2017.06.038.
  • Aghbashlo, M., M. Tabatabaei, H. Jazini, and H. S. Ghaziaskar. 2018b. Exergoeconomic and exergoenvironmental co-optimization of continuous fuel additives (acetins) synthesis from glycerol esterification with acetic acid using Amberlyst 36 catalyst. Energy Conversion and Management 165:183–94. doi:10.1016/j.enconman.2018.03.054.
  • Aghbashlo, M., M. Tabatabaei, E. Khalife, B. Najafi, S. M. Mirsalim, A. Gharehghani, P. Mohammadi, A. Dadak, T. Roodbar Shojaei, and Z. Khounani. 2017c. A novel emulsion fuel containing aqueous nano cerium oxide additive in diesel–Biodiesel blends to improve diesel engines performance and reduce exhaust emissions: Part II – Exergetic analysis. Fuel 205:262–71. doi:10.1016/j.fuel.2017.05.003.
  • Aghbashlo, M., M. Tabatabaei, E. Khalife, T. Roodbar Shojaei, and A. Dadak. 2018c. Exergoeconomic analysis of a DI diesel engine fueled with diesel/biodiesel (B5) emulsions containing aqueous nano cerium oxide. Energy 149:967–78. doi:10.1016/j.energy.2018.02.082.
  • Aghbashlo, M., M. Tabatabaei, P. Mohammadi, B. Khoshnevisan, M. A. Rajaeifar, and M. Pakzad. 2017d. Neat diesel beats waste-oriented biodiesel from the exergoeconomic and exergoenvironmental point of views. Energy Conversion and Management 148:1–15. doi:10.1016/j.enconman.2017.05.048.
  • Aghbashlo, M., M. Tabatabaei, P. Mohammadi, M. Mirzajanzadeh, M. Ardjmand, and A. Rashidi. 2016. Effect of an emission-reducing soluble hybrid nanocatalyst in diesel/biodiesel blends on exergetic performance of a DI diesel engine. Renewable Energy 93:353–368.
  • Aghbashlo, M., M. Tabatabaei, P. Mohammadi, N. Pourvosoughi, A. M. Nikbakht, and S. A. H. Goli. 2015. Improving exergetic and sustainability parameters of a DI diesel engine using polymer waste dissolved in biodiesel as a novel diesel additive. Energy Conversion and Management 105:328–37. doi:10.1016/j.enconman.2015.07.075.
  • Aghbashlo, M., M. Tabatabaei, H. Rastegari, and H. S. Ghaziaskar. 2018d. Exergy-based sustainability analysis of acetins synthesis through continuous esterification of glycerol in acetic acid using Amberlyst® 36 as catalyst. Journal of Cleaner Production 183:1265–75. doi:10.1016/j.jclepro.2018.02.218.
  • Aghbashlo, M., M. Tabatabaei, H. Rastegari, H. S. Ghaziaskar, and T. Roodbar Shojaei. 2018e. On the exergetic optimization of solketalacetin synthesis as a green fuel additive through ketalization of glycerol-derived monoacetin with acetone. Renewable Energy 126:242–53. doi:10.1016/j.renene.2018.03.047.
  • Ahmmad, M. S., H. Hassan, M. Bin, and M. A. Kalam. 2018. Comparative corrosion characteristics of automotive materials in Jatropha biodiesel. International Journal of Green Energy 15:393–99. doi:10.1080/15435075.2018.1464925.
  • Aksoy, F. 2016. Alkaline catalyzed biodiesel production from safflower (Carthamus tinctorius L.) oil: Optimization of parameters and determination of fuel properties. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 38:835–41. doi:10.1080/15567036.2013.807319.
  • Al-Dawody, M. F., and S. K. Bhatti. 2013. Optimization strategies to reduce the biodiesel NOx effect in diesel engine with experimental verification. Energy Conversion and Management 68:96–104. doi:10.1016/j.enconman.2012.12.025.
  • Almeida, E. S., F. M. Portela, R. M. F. Sousa, D. Daniel, M. G. H. Terrones, E. M. Richter, and R. A. A. Muñoz. 2011. Behaviour of the antioxidant tert-butylhydroquinone on the storage stability and corrosive character of biodiesel. Fuel 90:3480–84. doi:10.1016/j.fuel.2011.06.056.
  • Amaya, A., O. Piamba, and J. Olaya. 2018. Improvement of corrosion resistance for gray cast iron in palm biodiesel application using thermoreactive diffusion niobium carbide (NbC) coating. Coatings 8:216. doi:10.3390/coatings8060216.
  • Amgain, K., B. N. Subedi, S. Joshi, and J. Bhattarai, 2018. Investigation on the effect of tinospora cordifolia plant extract as a green corrosion inhibitor to aluminum and copper in biodiesel and its blend, in: NIGIS * CORCON. Jaipur, India, p. Paper No. PP19.
  • Aquino, I. P., R. P. B. Hernandez, D. L. Chicoma, H. P. F. Pinto, and I. V. Aoki. 2012. Influence of light, temperature and metallic ions on biodiesel degradation and corrosiveness to copper and brass. Fuel 102:795–807. doi:10.1016/j.fuel.2012.06.011.
  • Ashraful, A. M., H. H. Masjuki, M. A. Kalam, H. K. Rashedul, H. Sajjad, and M. J. Abedin. 2014. Influence of anti-corrosion additive on the performance, emission and engine component wear characteristics of an IDI diesel engine fueled with palm biodiesel. Energy Conversion and Management 87:48–57. doi:10.1016/j.enconman.2014.06.093.
  • Aslan, S., N. Aka, and M. H. Karaoglu. 2019. NaOH impregnated sepiolite based heterogeneous catalyst and its utilization for the production of biodiesel from canola oil. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 41:290–97.
  • Aysu, T., and N. Esim. 2016. Supercritical liquefaction of common reed (Phragmites australis) with alkali catalysts. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 38:1336–44. doi:10.1080/15567036.2014.919369.
  • Banković-Ilić, I. B., I. J. Stojković, O. S. Stamenković, V. B. Veljkovic, and Y.-T. Hung. 2014. Waste animal fats as feedstocks for biodiesel production. Renewable and Sustainable Energy Reviews 32:238–54. doi:10.1016/j.rser.2014.01.038.
  • Bereket, G., A. Pınarbaşı, and C. Öğretir. 2004. Benzimidazole-2-tione and benzoxazole-2-tione derivatives as corrosion inhibitors for aluminium in hydrochloric acid. Anti-Corrosion Methods and Materials 51:282–93. doi:10.1108/00035590410541364.
  • Boonyongmaneerat, Y., C. Sukjamsri, U. Sahapatsombut, S. Saenapitak, and S. Sukkasi. 2011. Investigation of electrodeposited Ni-based coatings for biodiesel storage. Applied Energy 88:909–13. doi:10.1016/j.apenergy.2010.08.026.
  • Celante, D., J. V. D. Schenkel, and F. de Castilhos. 2018. Biodiesel production from soybean oil and dimethyl carbonate catalyzed by potassium methoxide. Fuel 212:101–07. doi:10.1016/j.fuel.2017.10.040.
  • Chandran, D., S. Gan, H. L. N. Lau, R. Raviadaran, M. Salim, and M. Khalid. 2018. Critical relationship between biodiesel fuel properties and degradation of fuel delivery materials of a diesel engine. Thermal Science and Engineering Progress 7:20–26. doi:10.1016/j.tsep.2018.04.018.
  • Chew, K. V., A. Haseeb, H. H. Masjuki, M. A. Fazal, and M. Gupta. 2013. Corrosion of magnesium and aluminum in palm biodiesel: A comparative evaluation. Energy 57:478–83. doi:10.1016/j.energy.2013.04.067.
  • Chew, T. L., and S. Bhatia. 2008. Catalytic processes towards the production of biofuels in a palm oil and oil palm biomass-based biorefinery. Bioresource Technology 99:7911–22. doi:10.1016/j.biortech.2008.03.009.
  • Cursaru, D.-L., G. Brănoiu, I. Ramadan, and F. Miculescu. 2014. Degradation of automotive materials upon exposure to sunflower biodiesel. Industrial Crops and Products 54:149–58. doi:10.1016/j.indcrop.2014.01.032.
  • Demirbas, A. 2017. Tomorrow’s biofuels: Goals and hopes. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 39:673–79. doi:10.1080/15567036.2016.1252815.
  • Deyab, M. A. 2016a. Corrosion inhibition of aluminum in biodiesel by ethanol extracts of Rosemary leaves. Journal of the Taiwan Institute of Chemical Engineers 58:536–41. doi:10.1016/j.jtice.2015.06.021.
  • Deyab, M. A. 2016b. The inhibition activity of butylated hydroxytoluene towards corrosion of carbon steel in biodiesel blend B20. Journal of the Taiwan Institute of Chemical Engineers 60:369–75. doi:10.1016/j.jtice.2015.10.035.
  • Díaz-Ballote, L., J. F. López-Sansores, L. Maldonado-López, and L. F. Garfias-Mesias. 2009. Corrosion behavior of aluminum exposed to a biodiesel. Electrochemistry Communications 11:41–44. doi:10.1016/j.elecom.2008.10.027.
  • Eskandari, M., A. Kia, S. Afrasiabi, A. Dara, M. Fahimizadeh, and H. Maddah. 2017. Experimental study of biodiesel fuel production from Euphorbiaceae using a Ca-Al-CO3 hydrotalcite catalyst. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 39:225–31. doi:10.1080/15567036.2016.1194916.
  • Fazal, M. A., A. Haseeb, and H. H. Masjuki. 2010. Comparative corrosive characteristics of petroleum diesel and palm biodiesel for automotive materials. Fuel Processing Technology 91:1308–15. doi:10.1016/j.fuproc.2010.04.016.
  • Fazal, M. A., A. Haseeb, and H. H. Masjuki. 2011a. Effect of temperature on the corrosion behavior of mild steel upon exposure to palm biodiesel. Energy 36:3328–34. doi:10.1016/j.energy.2011.03.028.
  • Fazal, M. A., A. Haseeb, and H. H. Masjuki. 2011b. Effect of different corrosion inhibitors on the corrosion of cast iron in palm biodiesel. Fuel Processing Technology 92:2154–59. doi:10.1016/j.fuproc.2011.06.012.
  • Fazal, M. A., A. Haseeb, and H. H. Masjuki. 2012. Degradation of automotive materials in palm biodiesel. Energy 40:76–83. doi:10.1016/j.energy.2012.02.026.
  • Fazal, M. A., A. Haseeb, and H. H. Masjuki. 2013. Corrosion mechanism of copper in palm biodiesel. Corrosion Science 67:50–59. doi:10.1016/j.corsci.2012.10.006.
  • Fazal, M. A., A. Haseeb, and H. H. Masjuki. 2014a. A critical review on the tribological compatibility of automotive materials in palm biodiesel. Energy Conversion and Management 79:180–86. doi:10.1016/j.enconman.2013.12.002.
  • Fazal, M. A., M. R. Jakeria, and A. Haseeb. 2014b. Effect of copper and mild steel on the stability of palm biodiesel properties: A comparative study. Industrial Crops and Products 58:8–14. doi:10.1016/j.indcrop.2014.03.019.
  • Fazal, M. A., M. R. Jakeria, A. Haseeb, and S. Rubaiee. 2017. Effect of antioxidants on the stability and corrosiveness of palm biodiesel upon exposure of different metals. Energy 135:220–26. doi:10.1016/j.energy.2017.06.128.
  • Fazal, M. A., B. S. Sazzad, A. Haseeb, and H. H. Masjuki. 2016. Inhibition study of additives towards the corrosion of ferrous metal in palm biodiesel. Energy Conversion and Management 122:290–97. doi:10.1016/j.enconman.2016.05.081.
  • Fazal, M. A., N. R. Suhaila, A. Haseeb, and S. Rubaiee. 2018a. Sustainability of additive-doped biodiesel: Analysis of its aggressiveness toward metal corrosion. Journal of Cleaner Production 181:508–16. doi:10.1016/j.jclepro.2018.01.248.
  • Fazal, M. A., N. R. Suhaila, A. Haseeb, S. Rubaiee, and A. Al-Zahrani. 2018b. Influence of copper on the instability and corrosiveness of palm biodiesel and its blends: An assessment on biodiesel sustainability. Journal of Cleaner Production 171:1407–14. doi:10.1016/j.jclepro.2017.10.144.
  • Fernandes, D. M., R. H. O. Montes, E. S. Almeida, A. N. Nascimento, P. V. Oliveira, E. M. Richter, and R. A. A. Muñoz. 2013. Storage stability and corrosive character of stabilised biodiesel exposed to carbon and galvanised steels. Fuel 107:609–14. doi:10.1016/j.fuel.2012.11.010.
  • Fujita, S., and D. Mizuno. 2007. Corrosion and corrosion test methods of zinc coated steel sheets on automobiles. Corrosion Science 49:211–19. doi:10.1016/j.corsci.2006.05.034.
  • Geller, D. P., T. T. Adams, J. W. Goodrum, and J. Pendergrass. 2010. Storage stability of poultry fat and diesel fuel mixtures: Part II–Chemical properties. Fuel 89:792–96. doi:10.1016/j.fuel.2009.09.021.
  • Gil, H., and C. Leygraf. 2007. Quantitative in situ analysis of initial atmospheric corrosion of copper induced by acetic acid. The Journal of the Electrochemical Society 154:C272–C278. doi:10.1149/1.2715315.
  • Hajjari, M., M. Tabatabaei, M. Aghbashlo, and H. Ghanavati. 2017. A review on the prospects of sustainable biodiesel production: A global scenario with an emphasis on waste-oil biodiesel utilization. Renewable and Sustainable Energy Reviews 72:445–64. doi:10.1016/j.rser.2017.01.034.
  • Hancsók, J., M. Bubálik, Á. Beck, and J. Baladincz. 2008. Development of multifunctional additives based on vegetable oils for high quality diesel and biodiesel. Chemical Engineering Research and Design 86:793–99. doi:10.1016/j.cherd.2008.03.011.
  • Haseeb, A., M. A. Fazal, M. I. Jahirul, and H. H. Masjuki. 2011. Compatibility of automotive materials in biodiesel: A review. Fuel 90:922–31. doi:10.1016/j.fuel.2010.10.042.
  • Haseeb, A., H. H. Masjuki, L. J. Ann, and M. A. Fazal. 2010a. Corrosion characteristics of copper and leaded bronze in palm biodiesel. Fuel Processing Technology 91:329–34. doi:10.1016/j.fuproc.2009.11.004.
  • Haseeb, A., S. Y. Sia, M. A. Fazal, and H. H. Masjuki. 2010b. Effect of temperature on tribological properties of palm biodiesel. Energy 35:1460–64. doi:10.1016/j.energy.2009.12.001.
  • Hoang, A. T. 2018a. Prediction of the density and viscosity of biodiesel and the influence of biodiesel properties on a diesel engine fuel supply system. Journal of Marine Engineering & Technology. doi:10.1080/20464177.2018.1532734.
  • Hoang, A. T. 2018b. Waste heat recovery from diesel engines based on Organic Rankine Cycle. Applied Energy 231:138–66. doi:10.1016/j.apenergy.2018.09.022.
  • Hoang, A. T. 2019. Experimental study on spray and emission characteristics of a diesel engine fueled with preheated bio-oils and diesel fuel. Energy 171:795–808. doi:10.1016/j.energy.2019.01.076.
  • Hoang, A. T., and A. T. Le. 2019. A review on deposit formation in the injector of diesel engines running on biodiesel. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 41 (5):584–99. doi:10.1080/15567036.2018.1520342.
  • Hoang, A. T., A. T. Le, and V. V. Pham. 2019a. A core correlation of spray characteristics, deposit formation, and combustion of a high-speed diesel engine fueled with Jatropha oil and diesel fuel. Fuel 244:159–75. doi:10.1016/j.fuel.2019.02.009.
  • Hoang, A. T., and V. V. Pham. 2018. A review on fuels used for marine diesel engines. Journal of Mechanical Engineering Research and Developments 41 (4):22–32.
  • Hoang, A. T., and V. V. Pham. 2019a. A study of emission characteristic, deposits, and lubrication oil degradation of a diesel engine running on preheated vegetable oil and diesel oil. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 41 (5):611–25. doi:10.1080/15567036.2018.1520344.
  • Hoang, A. T., and V. V. Pham. 2019b. Impact of jatropha oil on engine performance, emission characteristics, deposit formation, and lubricating oil degradation. Combustion Science and Technology 191 (3):504–19. doi:10.1080/00102202.2018.1504292.
  • Hoang, A. T., V. D. Tran, V. H. Dong, and A. T. Le. 2019b. An experimental analysis on physical properties and spray characteristics of an ultrasound-assisted emulsion of ultra-low-sulphur diesel and Jatropha-based biodiesel. Journal of Marine Engineering & Technology. doi:10.1080/20464177.2019.1595355.
  • Hosseinpour, S., M. Aghbashlo, M. Tabatabaei, and E. Khalife. 2016. Exact estimation of biodiesel cetane number (CN) from its fatty acid methyl esters (FAMEs) profile using partial least square (PLS) adapted by artificial neural network (ANN). Energy Conversion and Management 124:389–98. doi:10.1016/j.enconman.2016.07.027.
  • Hosseinzadeh-Bandbafha, H., M. Tabatabaei, M. Aghbashlo, M. Khanali, and A. Demirbas. 2018. A comprehensive review on the environmental impacts of diesel/biodiesel additives. Energy Conversion and Management 174:579–614. doi:10.1016/j.enconman.2018.08.050.
  • Hu, E., Y. Xu, X. Hu, L. Pan, and S. Jiang. 2012. Corrosion behaviors of metals in biodiesel from rapeseed oil and methanol. Renewable Energy 37:371–78. doi:10.1016/j.renene.2011.07.010.
  • Jakeria, M. R., M. A. Fazal, and A. Haseeb. 2014. Influence of different factors on the stability of biodiesel: A review. Renewable and Sustainable Energy Reviews 30:154–63. doi:10.1016/j.rser.2013.09.024.
  • Jakeria, M. R., M. A. Fazal, and A. Haseeb. 2015. Effect of corrosion inhibitors on corrosiveness of palm biodiesel. Corrosion Engineering, Science and Technology 50:56–62. doi:10.1179/1743278214Y.0000000208.
  • Jin, D., X. Zhou, P. Wu, L. Jiang, and H. Ge. 2015. Corrosion behavior of ASTM 1045 mild steel in palm biodiesel. Renewable Energy 81:457–63. doi:10.1016/j.renene.2015.03.022.
  • Joshi, H. C., and M. Negi. 2017. Study the production and characterization of Neem and Mahua based biodiesel and its blends with diesel fuel: An optimum blended fuel for Asia. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 39:1894–900. doi:10.1080/15567036.2017.1384868.
  • Kamiński, J., and K. J. Kurzydłowski. 2008. Use of impedance spectroscopy to testing corrosion resistance of carbon steel and stainless steel in water-biodiesel configuration. Journal Corrosion Measurement 6:1–5.
  • Kaul, S., R. C. Saxena, A. Kumar, M. S. Negi, A. K. Bhatnagar, H. B. Goyal, and A. K. Gupta. 2007. Corrosion behavior of biodiesel from seed oils of Indian origin on diesel engine parts. Fuel Processing Technology 88:303–07. doi:10.1016/j.fuproc.2006.10.011.
  • Khalife, E., M. Tabatabaei, A. Demirbas, and M. Aghbashlo. 2017a. Impacts of additives on performance and emission characteristics of diesel engines during steady state operation. Progress in Energy and Combustion Science 59:32–78. doi:10.1016/j.pecs.2016.10.001.
  • Khalife, E., M. Tabatabaei, B. Najafi, S. M. Mirsalim, A. Gharehghani, P. Mohammadi, M. Aghbashlo, A. Ghaffari, Z. Khounani, and T. R. Shojaei. 2017b. A novel emulsion fuel containing aqueous nano cerium oxide additive in diesel–Biodiesel blends to improve diesel engines performance and reduce exhaust emissions: Part I–Experimental analysis. Fuel 207:741–50. doi:10.1016/j.fuel.2017.06.033.
  • Khan, O., M. E. Khan, A. K. Yadav, and D. Sharma. 2017. The ultrasonic-assisted optimization of biodiesel production from eucalyptus oil. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 39:1323–31. doi:10.1080/15567036.2017.1328001.
  • Maru, M. M., M. M. Lucchese, C. Legnani, W. G. Quirino, A. Balbo, I. B. Aranha, L. T. Costa, C. Vilani, L. Á. de Sena, and J. C. Damasceno. 2009. Biodiesel compatibility with carbon steel and HDPE parts. Fuel Processing Technology 90:1175–82. doi:10.1016/j.fuproc.2009.05.014.
  • Moradi, G. R., S. Dehghani, F. Khosravian, and A. Arjmandzadeh. 2013. The optimized operational conditions for biodiesel production from soybean oil and application of artificial neural networks for estimation of the biodiesel yield. Renewable Energy 50:915–20.
  • Nguyen, D. N., A. T. Hoang, M. T. Sai, M. Q. Chau, and V. V. Pham. 2018. Effect of Sn component on properties and microstructure Cu-Ni-Sn alloys. Jurnal Teknologi 80 (6):43–51.
  • Norouzi, S., F. Eslami, M. L. Wyszynski, and A. Tsolakis. 2012. Corrosion effects of RME in blends with ULSD on aluminium and copper. Fuel Processing Technology 104:204–10. doi:10.1016/j.fuproc.2012.05.016.
  • Norouzi, S., K. Hazeri, M. L. Wyszynski, and A. Tsolakis. 2014. Investigation on the effects of temperature, dissolved oxygen and water on corrosion behaviour of aluminium and copper exposed to diesel-type liquid fuels. Fuel Processing Technology 128:220–31. doi:10.1016/j.fuproc.2014.07.001.
  • Pantoja, S. S., L. R. V. Da Conceição, C. E. F. Da Costa, J. R. Zamian, and G. N. Da Rocha Filho. 2013. Oxidative stability of biodiesels produced from vegetable oils having different degrees of unsaturation. Energy Conversion and Management 74:293–98. doi:10.1016/j.enconman.2013.05.025.
  • Patil, P. D., and S. Deng. 2009. Optimization of biodiesel production from edible and non-edible vegetable oils. Fuel 88:1302–06. doi:10.1016/j.fuel.2009.01.016.
  • Prieto, L. E. G., P. A. Sorichetti, and S. D. Romano. 2008. Electric properties of biodiesel in the range from 20 Hz to 20 MHz. Comparison with diesel fossil fuel. International Journal of Hydrogen Energy 33:3531–37. doi:10.1016/j.ijhydene.2007.10.036.
  • Rashid, U., F. Anwar, and G. Knothe. 2009. Evaluation of biodiesel obtained from cottonseed oil. Fuel Processing Technology 90:1157–63. doi:10.1016/j.fuproc.2009.05.016.
  • Rashid, U., S. G. Bhatti, T. M. Ansari, R. Yunus, and M. Ibrahim. 2016. Biodiesel production from Cannabis sativa oil from Pakistan. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 38:865–75. doi:10.1080/15567036.2013.803179.
  • Rocabruno-Valdés, C. I., J. A. Hernández, A. U. Juantorena, E. G. Arenas, R. Lopez-Sesenes, V. M. Salinas-Bravo, and J. G. González-Rodriguez. 2018. An electrochemical study of the corrosion behaviour of metals in canola biodiesel. Corrosion Engineering, Science and Technology 53:153–62. doi:10.1080/1478422X.2018.1443621.
  • Román, A. S., M. S. Barrientos, M. Á. Noceras, C. M. Méndez, and A. E. Ares. 2018. Resistance to corrosion of Al-Cu alloy in biodiesel. Matéria (Rio Janeiro) 23 (2). doi:10.1590/s1517-707620180002.0388.
  • Roschat, W., T. Siritanon, B. Yoosuk, and V. Promarak. 2016. Biodiesel production from palm oil using hydrated lime-derived CaO as a low-cost basic heterogeneous catalyst. Energy Conversion and Management 108:459–67. doi:10.1016/j.enconman.2015.11.036.
  • Salam, K. A., S. B. Velasquez-Orta, and A. P. Harvey. 2016. Surfactant-assisted direct biodiesel production from wet Nannochloropsis occulata by in situ transesterification/reactive extraction. Biofuel Research Journal 3:366–71. doi:10.18331/BRJ.
  • Samuel, O. D., and M. Gulum. 2018. Mechanical and corrosion properties of brass exposed to waste sunflower oil biodiesel-diesel fuel blends. Chemical Engineering Communications 206 (5): 682–694.
  • Santana, P. M. B., M. De, Meira, and E. K. Tentardini. 2015. Effects of adding some natural substances to biodiesel to control its effect on carbon steel corrosion. Materials Research 18:164–69.
  • Sazzad, B. S., M. A. Fazal, A. Haseeb, and H. H. Masjuki. 2016. Retardation of oxidation and material degradation in biodiesel: A review. RSC Advances 6:60244–63.
  • Sgroi, M., G. Bollito, G. Saracco, and S. Specchia. 2005. BIOFEAT: Biodiesel fuel processor for a vehicle fuel cell auxiliary power unit: Study of the feed system. Journal of Power Sources 149:8–14.
  • Shalaby, N. H., M. S. Elmelawy, and S. A. Hassan. 2018. A study on optimization of acid sites concentration versus pore dimensions in modified solid acid catalysts for biodiesel production. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 40:22–32.
  • Shan, R., L. Lu, Y. Shi, H. Yuan, and J. Shi. 2018. Catalysts from renewable resources for biodiesel production. Energy Conversion and Management 178:277–89.
  • Singh, B., J. Korstad, and Y. C. Sharma. 2012. A critical review on corrosion of compression ignition (CI) engine parts by biodiesel and biodiesel blends and its inhibition. Renewable and Sustainable Energy Reviews 16:3401–08.
  • Singhasiri, T., and N. Tantemsapya. 2016a. Production of biodiesel from food processing waste using response surface methodology. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 38:2799–808.
  • Singhasiri, T., and N. Tantemsapya. 2016b. The utilization of waste egg and cockle shell as catalysts for biodiesel production from food processing waste oil using stirring and ultrasonic agitation. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 38:3125–31.
  • Sorate, K. A., and P. V. Bhale. 2013. Impact of biodiesel on fuel system materials durability. Journal of Scientific and Industrial Research 72 (01):48–57.
  • Squissato, A. L., T. S. Neri, N. M. M. Coelho, E. M. Richter, and R. A. A. Munoz. 2018. In situ electrochemical determination of free Cu (II) ions in biodiesel using screen-printed electrodes: Direct correlation with oxidation stability. Fuel 234:1452–58.
  • Su, F., and Y. Guo. 2014. Advancements in solid acid catalysts for biodiesel production. Green Chemistry 16:2934–57.
  • Takase, M., A. N. M. Pappoe, E. A. Afrifa, and M. Miyittah. 2018. High performance heterogeneous catalyst for biodiesel production from non-edible oil. Renewable Energy Focus 25:24–30.
  • Tan, Y. H., M. O. Abdullah, C. Nolasco-Hipolito, and Y. H. Taufiq-Yap. 2015. Waste ostrich-and chicken-eggshells as heterogeneous base catalyst for biodiesel production from used cooking oil: Catalyst characterization and biodiesel yield performance. Applied Energy 160:58–70.
  • Teo, S. H., A. Islam, E. S. Chan, S. Y. T. Choong, N. H. Alharthi, Y. H. Taufiq-Yap, and M. R. Awual. 2019. Efficient biodiesel production from Jatropha curcus using CaSO4/Fe2O3-SiO2 core-shell magnetic nanoparticles. Journal of Cleaner Production 208:816–26.
  • Teo, S. H., A. Islam, C. H. Ng, N. Mansir, T. Ma, S. Y. T. Choong, and Y. H. Taufiq-Yap. 2018. Methoxy-functionalized mesostructured stable carbon catalysts for effective biodiesel production from non-edible feedstock. Chemical Engineering Journal 334:1851–68.
  • Thangavelu, S. K., A. S. Ahmed, and F. N. Ani. 2016. Impact of metals on corrosive behavior of biodiesel–Diesel–Ethanol (BDE) alternative fuel. Renewable Energy 94:1–9.
  • Thirugnanasambandham, K., K. Shine, H. A. Aziz, and M. L. Gimenes. 2017. Biodiesel synthesis from waste oil using novel microwave technique: Response surface modeling and optimization. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 39:636–42.
  • Tomić, M., N. Đurišić-Mladenović, R. Mićić, M. Simikić, and L. Savin. 2019. Effects of accelerated oxidation on the selected fuel properties and composition of biodiesel. Fuel 235:269–76.
  • Tsuchiya, T., H. Shiotani, S. Goto, G. Sugiyama, and A. Maeda, 2006. Japanese standards for diesel fuel containing 5% FAME: Investigation of acid generation in FAME blended diesel fuels and its impact on corrosion. SAE Technical Paper.
  • Tupufia, S. C., Y. J. Jeon, C. Marquis, A. A. Adesina, and P. L. Rogers. 2013. Enzymatic conversion of coconut oil for biodiesel production. Fuel Processing Technology 106:721–26.
  • Wang, -L.-L., Y. Zhang, F. Zhang, and R. Feng. 2016. A bronsted basic ionic liquid as an efficient and environmentally benign catalyst for biodiesel synthesis from soybean oil and methanol. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 38:2770–76.
  • Xia, W. 2016. Biodiesel as a renewable collector for coal flotation in the future. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 38:1938–43.
  • Yan, X., J. Sun, and Y. Meng. 2018. Experimental insight into the chemical corrosion mechanism of copper with an oil-in-water emulsion solution. RSC Advances 8:9833–40.
  • Yan, X., X. Zhang, H. Chen, Y. Xu, and C. Tan. 2014. Techno-economic and social analysis of energy storage for commercial buildings. Energy Conversion and Management 78:125–36.
  • Yang, C., K. He, Y. Xue, Y. Li, H. Lin, and H. Sheng. 2018. Factors affecting the cold flow properties of biodiesel: Fatty acid esters. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 40:516–22.
  • Zuleta, E. C., L. Baena, L. A. Rios, and J. A. Calderón. 2012. The oxidative stability of biodiesel and its impact on the deterioration of metallic and polymeric materials: A review. The Journal of the Brazilian Chemical Society 23:2159–75.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.