733
Views
26
CrossRef citations to date
0
Altmetric
Review

A short review on the techniques of waste heat recovery from domestic applications

, , , &
Pages 3019-3034 | Received 19 Oct 2018, Accepted 29 Apr 2019, Published online: 01 Jul 2019

References

  • Abam, F. I., T. A. Briggs, E. B. Ekwe, C. G. Kanu, S. O. Effiom, M. C. Ndukwu, S. O. Ohunakin, and M. I. Ofem. 2018. Exergy analysis of a novel low-heat recovery organic Rankine cycle (ORC) for combined cooling and power generation. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. doi:10.1080/15567036.2018.1549140.
  • Ahmad, I., and A. Rashid. 2010. Study of geothermal energy resources of pakistan for electric power generation. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 32 (9):826–38. doi:10.1080/15567030802606210.
  • Alaswad, A., A. Baroutaji, H. Achour, J. Carton, A. Al Makky, and A. G. Olabi. 2015a. Developments in fuel cell technologies in the transport sector. International Journal of Hydrogen Energy 41 (37):16499–508. doi:10.1016/j.ijhydene.2016.03.164.
  • Alaswad, A., M. Dassisti, T. Prescott, and A. G. Olabi. 2015b. Technologies and developments of third generation biofuel production. Renewable and Sustainable Energy Reviews 51:1446–60. doi:10.1016/j.rser.2015.07.058.
  • Alnahhal, S., and E. Spremberg. 2016. Contribution to exemplary in-house wastewater heat recovery in Berlin, Germany. Procedia CIRP 40:35–40. doi:10.1016/j.procir.2016.01.046.
  • Amon, R., M. Maulhardt, T. Wong, D. Kazama, and C. W. Simmons. 2015. Waste heat and water recovery opportunities in California tomato paste processing. Applied Thermal Engineering 78:525–32. doi:10.1016/j.applthermaleng.2014.11.081.
  • Aranguren, P., D. Astrain, A. Rodríguez, and A. Martínez. 2015. Experimental investigation of the applicability of a thermoelectric generator to recover waste heat from a combustion chamber. Applied Energy 152:121–30. doi:10.1016/j.apenergy.2015.04.077.
  • Beentjes, I., R. Manouchehri, and M. R. Collins. 2014. An investigation of drain-side wetting on the performance of falling film drain water heat recovery systems. Energy Build 82:660–67. doi:10.1016/j.enbuild.2014.07.069.
  • Buczynski, R., R. Weber, R. Kim, and P. Schwoppe. 2016a. One-dimensional model of heat-recovery, non-recovery coke ovens. Part III: Upper-oven, down-comers and sole-flues. Fuel 181:1132–50. doi:10.1016/j.fuel.2016.01.087.
  • Buczynski, R., R. Weber, R. Kim, and P. Schwöppe. 2016b. One-dimensional model of heat-recovery, non-recovery coke ovens. Part II: Coking-bed sub-model. Fuel 181:1115–31. doi:10.1016/j.fuel.2016.01.086.
  • C M, L., and W. D. Lubitz. 2009. Comparing domestic water heating technologies. Technology in Society 31:244–56. doi:10.1016/j.techsoc.2009.06.005.
  • Carton, J. G., and A. G. Olabi. 2015. Representative model and flow characteristics of open pore cellular foam and potential use in proton exchange membrane fuel cells. International Journal of Hydrogen Energy 40 (16):5726–38. doi:10.1016/j.ijhydene.2015.02.122.
  • Carton, J. G., and A. G. Olabi. 2017. Three-dimensional proton exchange membrane fuel cell model: Comparison of double channel and open pore cellular foam flow plates. Energy 136:185–95. doi:10.1016/j.energy.2016.02.010.
  • Chahine, K., M. Ramadan, Z. Merhi, H. Jaber, and M. Khaled. 2016. Parametric analysis of temperature gradient across thermoelectric power generators. Journal of Electrical Systems 12-3:623–32.
  • Champier, D., J. P. Bédécarrats, T. Kousksou, M. Rivaletto, F. Strub, and P. Pignolet. 2011. Study of a TE (thermoelectric) generator incorporated in a multifunction wood stove. Energy 36:1518–26. doi:10.1016/j.energy.2011.01.012.
  • Chen, B. M., Y. A. Abakr, P. H. Riley, and D. B. Hann. 2012. Development of thermoacoustic engine operating by waste heat from cooking stove. AIP Conf. Proc 1440:532–40.
  • Chinnapandian, M., V. Pandiyarajan, A. Prabhu, and R. Velraj. 2015. Experimental investigation of a cascaded latent heat storage system for diesel engine waste heat recovery. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 37 (12):1308–17. doi:10.1080/15567036.2011.586974.
  • Culha, O., H. Gunerhan, E. Biyik, O. Ekren, and A. Hepbasli. 2015. Heat exchanger applications in wastewater source heat pumps for buildings: A key review. Energy Build 104:215–32. doi:10.1016/j.enbuild.2015.07.013.
  • De Paepe, M., E. Theuns, S. Lenaers, and J. Van Loon. 2003. Heat recovery system for dishwashers. Applied Thermal Engineering 23:743–56. doi:10.1016/S1359-4311(03)00016-4.
  • El Hage, H., A. Herez, M. Ramadan, H. Bazzi, and M. Khaled. 2018. An investigation on solar drying: A review with economic and environmental assessment. Energy 157:815–29. A. Herez, M. Khaled, R. Murr, A. Haddad, H. Elhage, M. Ramadan. Using Geothermal Energy for cooling - Parametric study. Energy Procedia. 119, 2017, 783-791. doi:10.1016/j.energy.2018.05.197.
  • El Mays, A., R. Ammar, M. Hawa, M. Abou Akroush, F. Hachem, M. Khaled, and M. Ramadan. 2017a. Using phase change material in under floor heating. Energy Procedia 119:806–11. doi:10.1016/j.egypro.2017.07.101.
  • El Mays, A., R. Ammar, M. Hawa, M. Abou Akroush, F. Hachem, M. Khaled, and M. Ramadan. 2017b. Improving photovoltaic panel using finned plate of aluminum. Energy Procedia 119:812–17. doi:10.1016/j.egypro.2017.07.103.
  • Gao, H. B., G. H. Huang, H. J. Li, Z. G. Qu, and Y. J. Zhang. 2016. Development of stove-powered thermoelectric generators: A review. Applied Thermal Engineering 96:297–310. doi:10.1016/j.applthermaleng.2015.11.032.
  • Georges, L., Y. Skreiberg, and V. Novakovic. 2014. On the proper integration of wood stoves in passive houses under cold climates. Energy Build 72:87–95. doi:10.1016/j.enbuild.2013.12.023.
  • Gogoi, B., and D. C. Baruah. 2016. Steady state heat transfer modeling of solid fuel biomass stove: Part 1. Energy 97:283–95. doi:10.1016/j.energy.2015.12.130.
  • Hachem, F., B. Abdulhay, M. Ramadan, H. El Hage, M. Gad El Rab, and M. Khaled. 2017, July. Improving the performance of photovoltaic cells using pure and combined phase change materials – Experiments and transient energy balance. Renewable Energy 107:567–75. doi: 10.1016/j.renene.2017.02.032.
  • Haddad, A., M. Ramadan, M. Khaled, and K. Chahine. An investigation on coupling fuel cell and photovoltaic systems for power generation,” 2016 3rd International Conference on Advances in Computational Tools for Engineering Applications (ACTEA), Beirut, 2016, pp. 37–42.
  • Hepbasli, A., E. Biyik, O. Ekren, H. Gunerhan, and M. Araz. 2014. A key review of waste water source heat pump (WWSHP) systems. Energy Conversion and Management 88:700–22. doi:10.1016/j.enconman.2014.08.065.
  • Herez, A., M. Ramadan, B. Abdulhay, and M. Khaled. Short review on solar energy systems. AIP Conference Proceedings 2016;1758,1: 10.1063/1.4959437.
  • Herez, A., M. Ramadana, and M. Khaled. 2018. Review on solar cooker systems: Economic and environmental study for different Lebanese scenarios. Renewable and Sustainable Energy Reviews 81:421–32. doi:10.1016/j.rser.2017.08.021.
  • Jaber, H., M. Khaled, T. Lemenand, J. Faraj, H. Bazzi, and M. Ramadan. 2017a. Effect of exhaust gases temperature on the performance of a hybrid heat recovery system. Energy Procedia 119:775–82. doi:10.1016/j.egypro.2017.07.110.
  • Jaber, H., M. Khaled, T. Lemenand, R. Murr, J. Faraj, and M. Ramadan. Triple domestic heat recovery system: Thermal modeling and parametric study. Proceedings of SEEP2017, 27-30 June 2017b, Bled, Slovenia.
  • Jaber, H., M. Khaled, T. Lemenand, and M. Ramadan. Short review on heat recovery from exhaust gas. AIP Conference Proceedings 2016; 1758, Bled, Slovenia 10.1063/1.4959441.
  • Jaber, H., M. Khaled, T. Lemenand, and M. Ramadan. Domestic Thermoelectric Cogeneration Drying System: Thermal Modeling, and Case Study,Energy, In Press, Accepted Manuscript, 2018a
  • Jaber, H., M. Ramadan, T. Lemenand, and M. Khaled. 2018b. Domestic thermoelectric cogeneration system optimization analysis, energy consumption and CO2 emissions reduction. Applied Thermal Engineering 130:279–95. doi:10.1016/j.applthermaleng.2017.10.148.
  • Khaled, M., H. Beltagy, A. Shaito, H. El Hage, and M. Ramadan. 2016a. Heating residential water using parabolic trough concentrators: Theoretical calculations and analysis. Progress in Industrial Ecology, an International Journal 10 (4), 321–333.
  • Khaled, M., R. Murr, H. El Hage, M. Ramadan, H. Ramadan, and M. Becherif. An iterative algorithm for simulating heat recovery from exhaust gas – Application on generators. mathematics and computers in simulation. In Press, Corrected Proof, Available online 26 April,2018.
  • Khaled, M., and M. Ramadan. 2016, September. Heating fresh air by hot exhaust air of HVAC systems. Case Studies in Thermal Engineering 8:398–402. doi: 10.1016/j.csite.2016.10.004.
  • Khaled, M., and M. Ramadan. 2017. Study of the thermal behavior of multi concentric tube tank in heat recovery from chimney – Analysis and optimization. Heat Transfer Engineering Journal 8:1–11.
  • Khaled, M., M. Ramadan, K. Chahine, and A. Assi. 2015. Prototype implementation and experimental analysis of water heating using recovered waste heat of chimneys. Case Studies in Thermal Engineering 5:127–33. doi:10.1016/j.csite.2015.03.004.
  • Khaled, M., M. Ramadan, and H. El Hage. 2015. Parametric analysis of heat recovery from exhaust gases of generators. Energy Procedia 75:3295–300. doi:10.1016/j.egypro.2015.07.710.
  • Khaled, M., M. Ramadan, and H. El Hage. 2016, April 25 . Innovative approach of determining the overall heat transfer coefficient of heat exchangers – Application to cross-flow water-air types. Applied Thermal Engineering 99: 1086–92. doi:10.1016/j.applthermaleng.2016.01.145.
  • Khaled, M., M. Ramadan, and M. G. El-Rab. Application of waste heat recovery concepts to generators — Thermal modeling and analysis,” International Conference on Renewable Energies for Developing Countries 2014, Beirut, 2014, pp. 82–88.
  • Khaled, M., M. Ramadan, A. Shaito, H. El Hage, F. Harambat, and H. Peerhossaini. 2016b. Parametric analysis of heat exchanger thermal performance in complex geometries – Effect of velocity and temperature distributions. Heat Transfer Engineering Journal 37:1027–37. doi:10.1080/01457632.2015.1104166.
  • Kolasinska, E., and P. Kolasinski. 2016. A review on electroactive polymers for waste heat recovery. Materials 9:485. doi:10.3390/ma9060485.
  • Krokida, M. K., and G. I. Bisharat. 2004. Heat recovery from dryer exhaust air. Drying Technology 22 (7):1661–74. doi:10.1081/DRT-200025626.
  • Kumar, M., S. Kumar, and S. K. Tyagi. 2013. Design, development and technological advancement in the biomass cookstoves: A review. Renewable and Sustainable Energy Reviews 26:265–85. doi:10.1016/j.rser.2013.05.010.
  • L T, W., M. K W, and Y. Guan. 2010. Shower water heat recovery in high-rise residential buildings of Hong Kong. Applied Energy 87:703–09. doi:10.1016/j.apenergy.2009.08.008.
  • Liu, L., L. Fu, and S. Zhang. 2014. The design and analysis of two exhaust heat recovery systems for public shower facilities. Applied Energy 132:267–75. doi:10.1016/j.apenergy.2014.07.013.
  • Liu, W. 2018. Optimizing energy recovery level of a Dutch waste incineration facility. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 40 (6):727–33. doi:10.1080/15567036.2018.1457739.
  • Mago, P. J. 2012. Exergetic evaluation of an organic rankine cycle using medium-grade waste. Heat,Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 34 (19):1768–80. doi:10.1080/15567036.2010.492382.
  • Manouchehri, R., B. C J, and C. M R. 2015. Impact of small tilt angles on the performance of falling film drainwater heat recovery systems. Energy Build 102:181–86. doi:10.1016/j.enbuild.2015.05.024.
  • McNabola, A., and K. Shields. 2013. Efficient drain water heat recovery in horizontal domestic shower drains. Energy Build 59:44–49. doi:10.1016/j.enbuild.2012.12.026.
  • Montecucco, A., J. Siviter, and A. R. Knox. 2017. Combined heat and power system for stoves with thermoelectric generators. Applied Energy 185:1336–42. doi:10.1016/j.apenergy.2015.10.132.
  • Montingelli, M. E., K. Y. Benyounis, J. Stokes, and A. G. Olabi. 2016. Pretreatment of macroalgal biomass for biogas production. Energy Conversion and Management 108:202–09. doi:10.1016/j.enconman.2015.11.008.
  • N C, B., S. U C, and J. H. Yoon. 2005. A study on the design and analysis of a heat pump heating system using wastewater as a heat source. Solar Energy 78:427–40. doi:10.1016/j.solener.2004.07.009.
  • Nam–Chol, O., P. Hyo–Song, S. Yong–Chol, R. Yong–Hyok, and K. Yong–Nam. 2018. A feasibility study of energy recovery of RDF from municipal solid waste. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 40 (24):2914–22. doi:10.1080/15567036.2018.1514431.
  • Nardin, G., A. Meneghetti, M. F D, and N. Benedetti. 2014. PCM-based energy recovery from electric arc furnaces. Applied Energy 136:947–55. doi:10.1016/j.apenergy.2014.07.052.
  • Ngusale, G. K., M. Oloko, S. Agong, and B. Nyakinya. 2017. Energy recovery from municipal solid waste. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 39 (16):1807–14. doi:10.1080/15567036.2017.1376007.
  • Orosa, J. A., E. J. García-Bustelo, and A. C. Oliveira. 2012. Realistic solutions for wind power production with climate change. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 34 (10):912–18. doi:10.1080/15567031003716733.
  • Ramadan, M., S. Ali, H. Bazzi, and M. Khaled. 10 September, 2017. New hybrid system combining TEG, condenser hot air and exhaust airflow of all-air HVAC systems. Case Studies in Thermal Engineering 154–60. doi:10.1016/j.csite.2017.05.007.
  • Ramadan, M., M. Gad El Rab, and M. Khaled. 2015. Parametric analysis of air-water heat recovery concept applied to HVAC systems: Effect of mass flow rates. Case Studies in Thermal Engineering 6:61–68. doi:10.1016/j.csite.2015.06.001.
  • Ramadan, M., and M. Khaled. Recovering heat from shower water — Design calculation and prototype. International Conference on Renewable Energies for Developing Countries 2014, Beirut, 2014, pp. 118–21.
  • Ramadan, M., M. Khaled, and H. El Hage. 2015. Using speed bump for power generation – Modeling and experimental study. Energy Procedia 75:867–72. doi:10.1016/j.egypro.2015.07.192.
  • Ramadan, M., M. Khaled, H. El Hage, F. Harambat, and H. Peerhossaini. 2016a. Effect of air temperature non-uniformity on water-air heat exchanger thermal performance – Towards new control approach for energy consumption reduction. Applied Energy 173:481–93. doi:10.1016/j.apenergy.2016.04.076.
  • Ramadan, M., M. Khaled, H. S. Ramadan, and M. Becherif. 2016b, November26.Modeling and sizing of combined fuel cell-thermal solar system for energy generation. International Journal of Hydrogen Energy 4144: 19929–35.doi: 10.1016/j.ijhydene.2016.08.222
  • Ramadan, M., T. Lemenand, and M. Khaled. 2016, September 15 . Recovering heat from hot drain water—Experimental evaluation, parametric analysis and new calculation procedure. Energy and Buildings 128: 575–58. doi:10.1016/j.enbuild.2016.07.017.
  • Ramadan, M., A. Shaer, A. Haddad, and M. Khaled, An experimental study on recovering heat from domestic drain water, TMREES16 International Conference on Technologies and Materials for Renewable Energy, Environment and Sustainability, AIP Conference Proceedings 1758, 030011 (2016c),  Beirut.
  • Raman, P., N. K. Ram, and J. Murali. 2014. Improved test method for evaluation of bio-mass cook-stoves. Energy 71:479–95. doi:10.1016/j.energy.2014.04.101.
  • Rodriguez, C., A. Alaswad, J. Mooney, T. Prescott, and A. G. Olabi. 2015. Pre-treatment techniques used for anaerobic digestion of algae. Fuel Processing Technology 138:765–79. doi:10.1016/j.fuproc.2015.06.027.
  • S S, C., and M. Maglionico. 2014. Heat recovery from urban wastewater: Analysis of the variability of flow rate and temperature in the sewer of Bologna, Italy. Energy Procedia 45:288:297.
  • Shen, Y.-Q., Y.-Q. Wu, and S.-H. Shi. 2015. Reserve assessment and potential exploitation of tidal energy in Shanghai’s Sea Area of China. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 37 (9):938–46. doi:10.1080/15567036.2011.576415.
  • Słys, D., and S. Kordana. 2014. Financial analysis of the implementation of a drain water heat recovery unit in residential housing. Energy Build 71:1–11. doi:10.1016/j.enbuild.2013.11.088.
  • Spur, R., D. Fiala, D. Nevrala, and D. Probert. 2006. Performances of modern domestic hot-water stores. Applied Energy 83:893–910. doi:10.1016/j.apenergy.2005.10.001.
  • Su, H., H. Qi, P. Liu, and J. Li. 2018. Experimental investigation on heat extraction using a two-phase closed thermosyphon for thermoelectric power generation. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 40 (12):1485–90. doi:10.1080/15567036.2018.1477875.
  • Tedesco, S., T. M. Barroso, and A. G. Olabi. 2014. Optimization of mechanical pre-treatment of Laminariaceae spp. Biomass-Derived Biogas. Renewable Energy 62:527–34.
  • Torras, S., C. Oliet, J. Rigola, and A. Oliva. 2016. Drain water heat recovery storage-type unit for residential housing. Applied Thermal Engineering 103:670–83. doi:10.1016/j.applthermaleng.2016.04.086.
  • Wallin, J., and J. Claesson. 2014. Investigating the efficiency of a vertical inline drain water heatrecovery heat exchanger in a system boosted with a heat pump. Energy Build 80:7–16. doi:10.1016/j.enbuild.2014.05.003.
  • Wei, L., Y. Zhang, Y. Mu, X. Yang, and X. Chen. 2011. Efficiency improving strategies of low-temperature heat conversion systems using organic rankine cycles: an overview. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 33 (9):869–78. doi:10.1080/15567036.2010.531514.
  • Wilberforce, T., A. Alaswad, A. Palumbo, M. Dassisti, and A. G. Olabi. 2016. Advances in stationary and portable fuel cell applications. International Journal of Hydrogen Energy 41 (37):16509–22. doi:10.1016/j.ijhydene.2016.02.057.
  • Yang, X., H. Li, and S. Svendsen. 2016. Evaluations of different domestic hot water preparing methods with ultra-low-temperature district heating. Energy 109:248–59. doi:10.1016/j.energy.2016.04.109.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.