256
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Influence factors and mechanism of selective catalytic reduction of NO in the flue gas over activated coke

, , , &
Pages 3035-3044 | Received 04 Oct 2018, Accepted 28 Apr 2019, Published online: 03 Jun 2019

References

  • Boehm, H. P. 1994. Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon 32 (5):759–69.
  • Boudou, J. P., M. Chehimi, E. Broniek, T. Siemieniewska, and J. Bimer. 2003. Adsorption of H2S or SO2 on an activated carbon cloth modified by ammonia treatment. Carbon 41 (10):1999–2007.
  • Casapu, M., O. Krocher, and M. Elsener. 2009. Screening of doped MnOx-CeO2 catalysis for low-temperature NO-SCR. Applied Catalysis 88 (1):419–419.
  • Chen, C. M., Y. Cao, S. T. Liu, J. M. Chen, and W. B. Jia. 2018. Review on the latest developments in modified vanadium titanium based SCR catalysts. Chinese Journal of Catalysis 38 (8):1347–65.
  • Chen, Y., Z. T. Zhang, L. L. Liu, L. Mi, and X. D. Wang. 2016. In situ DRIFTS studies on MnOx nanowires supported by activated semi-coke for low temperature selective catalytic reduction of NOxwith NH3. Applied Surface Science 366:139–47.
  • Forzatti, P. 2001. Present status and perspective in de-NOx SCR catalysis. Applied Catalysis A: General 222 (1):221–36.
  • Fu, Y. L., Y. F. Zhang, L. G Q, J. Zhang, and Y. J. Guo. 2017. NO removal activity and surface characterization of activated carbon with oxidation modification. Journal of the Energy Institute 90 (5):813–23.
  • Hu, R., H. L. Wang, Y. Yin, C. Kui, and Z. Bin. 2018. Mixing state of ambient aerosols during different fog-haze pollution episodes in the Yangtze River Delta. Atmospheric Environment 178:1–10.
  • Huang, H. Y., R. Q. Long, and R. T. Yang. 2002. Kinetics of selective catalytic reduction of NO with NH3 on Fe-ZSM-5 catalyst. Applied Catalysis: General 235 (2):241–51.
  • Illan-Gomez, M. J., A. Linares-Solano, and A. Salinas-Martinez de Lecea. 1993. NO reduction by activated carbons. 1. The role of carbon porosity and surface area. Energy & Fuels 7 (1):146–54.
  • Izquierdo, M. T., B. Rubio, C. Mayoral, and J. M. Andres. 2001. Modifications to the surface chemistry of low-rank coal-based carbon catalysts to improve flue gas nitric oxide removal. Applied Catalysis B: Environmental 33 (4):315–24.
  • Jiang, Y., C. Z. Bao, Q. Y. Liu, G. T. Liang, M. Y. Lu, and S. Y. Ma. 2018. A novel CeO2-MoO3-WO3/TiO2 catalyst for selective catalytic reduction of NO with NH3. Catalysis Communications 103 (5):96–100.
  • Koebel, M., G. Madia, and M. Elsener. 2002. Selective catalytic reduction of NO and NO2 at low temperatures. Catalysis Today 73 (3):239–47.
  • Lin, Y. T., Y. R. Li, Z. C. Xu, J. Xiong, and T. Y. Zhu. 2018. Transformation of functional groups in the reduction of NO with NH3 over nitrogen-enriched activated carbons. Fuel 223:312–23.
  • Luca, L., R. Gianguido, B. C. Francesco, R. C. Davide, B. B. Guido, and F. Pio. 1998. Chemical, structural and mechanistic aspects on NOx SCR over commercial and model oxide catalysts. Catalysis Today 42 (2):101–16.
  • Martin Martinez, J. M., L. Singoredjo, and M. Mittelmeijer-Hazeleger. 1994. Selective catalytic reduction of NO with NH3 over activated carbons. Ⅰ: Effect of origin and activation procedure on activity. Carbon 32 (5):897–904.
  • Mochida, I., M. Ogaki, H. Fujitsu, Y. Komatsubara, and S. Ida. 1983. Catalytic activity of coke activated with sulphuric acid for the reduction of nitric oxide. Fuel 62:867–68.
  • Poling, B. E., J. M. Prasusniltz, and J. P. O. Connell. 2001. The properties of gases and liquids, Appendix B: 2. New York: MacGraw Hill.
  • Qi, K., J. L. Xie, D. Fang, F. X. Li, and F. He. 2017. Performance enhancement mechanism of Mn-based catalysts prepared under N2 for NOx removal: Evidence of the poor crystallization and oxidation of MnOx. Chinese Journal of Catalysis 38 (5):845–51.
  • Qiu, Y., B. Liu, J. Du, Q. Tang, Z. H. Liu, R. L. Liu, and C. Y. Tao. 2016. The monolithic cordierite supported V2O5–MoO3/TiO2 catalyst for NH3-SCR. Chemical Engineering Journal 294 (15):364–272.
  • Ren, S., F. Q. Guo, J. Yang, L. Yao, Q. Zhao, and M. Kong. 2017. Selection of carbon materials and modification methods in low-temperature sintering flue gas denitrification. Chemical Engineering Research and Design 126:278–85.
  • Salazar, M., S. Hoffmann, V. S. Ralf Becker, and W. Grünert. 2016. Hybrid catalysts for the selective catalytic reduction (SCR) of NO by NH3. On the role of fast SCR in the reaction network. Applied Catalysis B: Environmental 199:433–38.
  • Teng, H., Y. Tu, Y. Lai, and C. C. Lin. 2001. Reduction of NO with NH3 over carbon catalysts: The effects of treating carbon with H2SO4 and HNO3. Carbon 39 (4):575–82.
  • Xie, W., S. J. Qu, P. Wang, D. M. Liang, X. L. Li, and Q. Wu. 2018. Low temperature flue gas denitrification performance of carbon materials prepared by blending coal method. Clean Coal Technology 24 (2):102–07.
  • Xie, W., Z. C. Sun, Y. W. Xiong, L. T. Li, T. Wu, and D. M. Liang. 2014. Effects of surface chemical properties of activated coke on selective catalytic reduction of NO with NH3 over commercial coal-based activated coke. International Journal of Mining Science and Technology 24 (4):471–75.
  • Xie, W., Y. W. Xiong, Z. C. Sun, D. M. Liang, L. T. Li, T. Wu, and L. Y. Guo. 2012. Study on denitrification performances of NH3 modified activated coke. Coal Science and Technology 40 (4):125–28.
  • Zhang, R., X. Sun, A. Shi, Y. H. Huang, J. Yan, T. Nie, X. Yan, and X. Li. 2018. Secondary inorganic aerosols formation during haze episodes at an urban site in Beijing, China. Atmospheric Environment 177:275–82.
  • Zhu, Z. P., Z. Y. Liu, S. Y. Liu, and H. X. Niu. 2000. Adsorption and reduction of NO over activated coke at low temperature. Fuel 79 (6):651–58.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.