311
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Experimental study on tensile strength and acoustic emission characteristics of shale exposure to supercritical CO2

, , , &
Pages 977-992 | Received 14 Jan 2019, Accepted 27 May 2019, Published online: 06 Jul 2019

References

  • Ao, X., Y. Lu, J. Tang, Y. Chen, and H. Li. 2017. Investigation on the physics structure and chemical properties of the shale treated by supercritical CO2. Journal of CO2 Utilization 20:274–81. doi:10.1016/j.jcou.2017.05.028.
  • Chen, L., S. Tian, G. Li, and X. Fan. 2015. Initiation pressure models for supercritical CO2 fracturing and sensitivity analysis. Yantu Lixue/rock & Soil Mechanics 36:125–131.
  • Chen, L. Q., S. C. Tian, G. S. Li, and X. Fan. 2015. Initiation pressure models for supercritical CO2 fracturing and sensitivity analysis. Rock & Soil Mechanics 36:125–31.
  • Choi, Y., and R. L. Yuan. 2005. Experimental relationship between splitting tensile strength and compressive strength of GFRC and PFRC. Cement & Concrete Research 35:1587–91. doi:10.1016/j.cemconres.2004.09.010.
  • Evans, A. G., and M. Linzer. 1974. Failure prediction in structural ceramics using acoustic emission. Journal of the American Ceramic Society 56 (11):575–81. doi:10.1111/j.1151-2916.1973.tb12419.x.
  • Gaus, I. 2010. Role and impact of CO2-rock interactions during CO2 storage in sedimentary rocks. International Journal of Greenhouse Gas Control 4:73–89. doi:10.1016/j.ijggc.2009.09.015.
  • Gharahbagh, A. E., and A. Fakhimi. 2011. The effect of pore size on tensile and compressive strengths of rock: A bonded particle simulation. International Journal of Biochemistry & Cell Biology 36:814–25.
  • Guo, T., S. Zhang, Q. U. Zhanqing, Z. Tong, Y. Xiao, and J. Gao. 2014. Experimental study of hydraulic fracturing for shale by stimulated reservoir volume. Fuel 128:373–80.
  • Ito, T. 2008. Effect of pore pressure gradient on fracture initiation in fluid saturated porous media: Rock. Engineering Fracture Mechanics 75:1753–62. doi:10.1016/j.engfracmech.2007.03.028.
  • Javed, S. H., A. Zahir, S. Azhar, K. Hafeez, S. Abid, A. Nazir, and N. Majeed. 2018. Physiochemical analysis of selected shale formations of Kohat region by advance characterization for oil potential evaluation. Energy Sources Part a-Recovery Utilization and Environmental Effects 40:1190–98. doi:10.1080/15567036.2018.1475520.
  • Jiang, Y., C. Qin, Z. Kang, J. Zhou, Y. Li, H. Liu, and X. Song. 2018. Experimental study of supercritical CO2 fracturing on initiation pressure and fracture propagation in shale under different triaxial stress conditions. Journal of Natural Gas Science and Engineering 55:382–94.
  • Jiang, Y., Y. Luo, Y. Lu, Q. Chao, and L. Hui. 2016. Effects of supercritical CO2 treatment time, pressure, and temperature on microstructure of shale. Energy 97:173–81.
  • John, S., M. Gauri, K. Erin, and J. Sophia. 2007. Solubility of carotenoids in supercritical CO2. Food Reviews International 23:341–371.
  • Kampman, N., M. Bickle, M. Wigley, and B. Dubacq. 2014. Fluid flow and CO2-fluid-mineral interactions during CO2-storage in sedimentary basins. Chemical Geology 369:22–50. doi:10.1016/j.chemgeo.2013.11.012.
  • Lee, K. N., H. J. Lee, J. Y. Lee, and J. H. Kim. 2001. Direct formation of phenolic/furfural aerogel microspheres in supercritical CO2. Journal of Dispersion Science and Technology 22:79–87. doi:10.1081/DIS-100102682.
  • Leybros, A., N. Segond, and A. Grandjean. 2018. Remediation of Cs-137-contaminated concrete rubble by supercritical CO2 extraction. Chemosphere 208:838–45. doi:10.1016/j.chemosphere.2018.06.051.
  • Luquot, L., and P. Gouze. 2009. Experimental determination of porosity and permeability changes induced by injection of CO2 into carbonate rocks. Chemical Geology 265:148–59. doi:10.1016/j.chemgeo.2009.03.028.
  • Middleton, R. S., R. Gupta, J. D. Hyman, and H. S. Viswanathan. 2017. The shale gas revolution: Barriers, sustainability, and emerging opportunities. Applied Energy 199:88–95. doi:10.1016/j.apenergy.2017.04.034.
  • Qiao, L., X. Long, P. G. Ranjith, J. Tan, J. Zhou, Z. Wang, and W. Luo. 2018. A laboratory study of geomechanical characteristics of black shales after sub-critical/super-critical CO2 + brine saturation. Geomechanics and Geophysics for Geo-Energy and Geo-Resources 4:141–56. doi:10.1007/s40948-018-0079-5.
  • Qin, C., Y. Jiang, Y. Luo, X. Xian, L. Hui, and L. Ye. 2016. The Effect of Supercritical CO2 treatment time, pressure, and temperature on shale water wettability. Energ Fuel 31:493–503. doi:10.1021/acs.energyfuels.6b03257.
  • Rohmer, J., A. Pluymakers, and F. Renard. 2016. Mechano-chemical interactions in sedimentary rocks in the context of CO2 storage: weak acid, weak effects?. Earth-Science Reviews. 157:86–110.
  • Rohmer, J., A. Pluymakers, and F. Renard. 2016. Mechano-chemical interactions in sedimentary rocks in the context of CO2 storage: Weak acid, weak effects? Earth-Science Reviews 157:86–110. doi:10.1016/j.earscirev.2016.03.009.
  • Sih, G. C. 1974. Strain-energy-density factor applied to mixed mode crack problems. International Journal of Fracture 10:305–21. doi:10.1007/BF00035493.
  • Tang, J. R., L. U. Yi-Yu, Y. T. Chen, X. W. Zhang, A. O. Xiang, Y. Z. Jia, and L. I. Qian. 2018. Experimental study of damage of shale mechanical properties under supercritical CO2. Rock & Soil Mechanics. 39, 797–802.
  • Tucker, J. D., B. Masri, and S. G. Lee. 2000. A comparison of retorting and supercritical extraction techniques on El-Lajjun oil shale. Energy Sources 22:453–63. doi:10.1080/00908310050013866.
  • Wang, H., G. Li, and Z. Shen. 2012. A feasibility analysis on shale gas exploitation with supercritical carbon dioxide. Energy Sources Part a-Recovery Utilization and Environmental Effects 34:1426–35. doi:10.1080/15567036.2010.529570.
  • Wu, D., X. Liu, K. Sun, X. Xiao, and L. Xin. 2019. Experiments on supercritical CO2 adsorption in briquettes. Energy Sources Part a-Recovery Utilization and Environmental Effects 41:1005–11. doi:10.1080/15567036.2018.1523258.
  • Yan, F., and Y. Song. 2009. Properties estimation of main oil shale in China. Energy Sources Part a-Recovery Utilization and Environmental Effects 31:372–76.
  • Yin, H., J. Zhou, X. Xian, Y. Jiang, Z. Lu, J. Tan, and G. Liu. 2017. Experimental study of the effects of sub- and super-critical CO2 saturation on the mechanical characteristics of organic-rich shales. Energy 132:84–95.
  • Yin, H., J. Zhou, Y. Jiang, X. Xian, and Q. Liu. 2016. Physical and structural changes in shale associated with supercritical CO2 exposure. Fuel 184:289–303. doi:10.1016/j.fuel.2016.07.028.
  • Zhang, S., X. Xian, J. Zhou, G. Liu, X. Jiang, and J. Teng. 2017. Acoustic emission characteristics and the energy distribution of the shale in Brazilian splitting testing. Journal of China Coal Society. 42(S2): 346–353.
  • Zhang, X., Y. Lu, J. Tang, Z. Zhe, and L. Yin. 2016. Experimental study on fracture initiation and propagation in shale using supercritical carbon dioxide fracturing. Fuel 190: 370–378.
  • Zhou, J., X. Shuang, Y. Jiang, X. Xian, Q. Liu, Z. Lu, and L. Qiao. 2018. Influence of supercritical CO2 exposure on CH 4 and CO2 adsorption behaviors of shale: Implications for CO2 sequestration. Energ Fuel 32:6073–89. doi:10.1021/acs.energyfuels.8b00551.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.