427
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Thermodynamic analysis of waste heat recovery of aluminum dross in electrolytic aluminum industry

, , ORCID Icon &
Pages 1047-1059 | Received 19 Mar 2019, Accepted 12 May 2019, Published online: 08 Jul 2019

References

  • Akiyama, T., K. Oikawa, T. Shimada, E. Kasai, and J. Yagi. 2000. Thermodynamic analysis of thermochemical recovery of high temperature wastes. ISIJ International 40 (3):286–91. doi:10.2355/isijinternational.40.286.
  • Akiyama, T., and J. Yag. 1998. Methodology to evaluate reduction limit of carbon dioxide emission and minimum exergy consumption for ironmaking. ISIJ International 38 (8):896–903. doi:10.2355/isijinternational.38.896.
  • Barati, M., S. Esfahani, and T. Utigard. 2011. Energy recovery from high temperature slags. Energy 36 (9):5440–49. doi:10.1016/j.energy.2011.07.007.
  • Biganzoli, L., A. Ilyas, M. V. Praagh, K. M. Persson, and M. Grosso. 2013. Aluminium recovery vs. hydrogen production as resource recovery options for fine MSWI bottom ash fraction. Waste Management 33 (5):1174–81. doi:10.1016/j.wasman.2013.01.037.
  • Duan, W., Q. Yu, K. Wang, Q. Qin, L. Hou, X. Yao, and T. Wu. 2015. ASPEN plus simulation of coal integrated gasification combined blast furnace slag waste heat recovery system. Energy Conversion and Management 100:30–36. doi:10.1016/j.enconman.2015.04.066.
  • Duan, W., Q. Yu, Z. Zuo, Q. Qin, P. Li, and J. Liu. 2014. The technological calculation for synergistic system of BF slag waste heat recovery and carbon resources reduction. Energy Conversion and Management 87:185–90. doi:10.1016/j.enconman.2014.07.029.
  • Hiraki, T., and T. Akiyama. 2009. Exergetic life cycle assessment of new waste aluminium treatment system with co-production of pressurized hydrogen and aluminium hydroxide. International Journal of Hydrogen Energy 34 (1):153–61. doi:10.1016/j.ijhydene.2008.09.073.
  • Hiraki, T., and T. Nagasaka. 2015. An easier upgrading process of aluminum dross residue by screening technique. Journal of Material Cycles and Waste Management 17 (3):566–73. doi:10.1007/s10163-014-0283-5.
  • Hiraki, T., M. Takeuchi, M. Hisa, and T. Akiyama. 2005. Hydrogen production from waste aluminum at different temperatures, with LCA. Materials Transactions 46 (5):1052–57. doi:10.2320/matertrans.46.1052.
  • Hiraki, T., S. Yamauchi, M. Iida, H. Uesugi, and T. Akiyama. 2007. Process for recycling waste aluminum with generation of high-pressure hydrogen. Environmental Science & Technology 41 (12):4454–57. doi:10.1021/es062883l.
  • Ishida, M. 1995. Thermodynamics-its perfect comprehension and applications-(in Japanese). Baifukan 93.
  • Izhevskiy, V. A., L. A. Genova, J. C. Bressiani, and F. Aldinger. 2000. Progress in SiAlON ceramics. Journal of the European Ceramic Society 20 (13):2275–95. doi:10.1016/S0955-2219(00)00039-X.
  • Kasai, E., T. Kitajima, T. Akiyama, J. Yagi, and F. Saito. 1997. Rate of methane-steam reforming reaction on the surface of molten BF slag-for heat recovery from molten slag by using a chemical reaction. ISIJ International 37 (10):1031–36. doi:10.2355/isijinternational.37.1031.
  • Li, P., Q. Qin, Q. B. Yu, and W. Y. Du 2010. Feasibility study for the system of coal gasification by molten blast furnace slag. Advanced Materials Research, 97 (101):2347–2351.
  • Li-min, D. W.-j. Y. Q.-b. Q. Q. H. 2014. Thermodynamic analysis of BF slag waste heat recovery system using enthalpy-exergy diagram. Journal of Northeastern University (Natural Science) 35 (11):5.
  • Mah, K., J. M. Toguri, and H. W. Smith. 1986. Electrostatic separation of aluminum from dross. Conservation & Recycling 9 (4):325–34. doi:10.1016/0361-3658(86)90067-6.
  • Qin, Y., X. Lv, C. Bai, G. Qiu, and P. Chen. 2012. Waste heat recovery from blast furnace slag by chemical reactions. JOM 64 (8):997–1001. doi:10.1007/s11837-012-0392-3.
  • Samat, N., F. A. Sabaruddin, M. S. Meor Yusoff, and A. I. H. Dayang Habibah. 2017. Evaluation of waste from aluminum industry as filler in polypropylene composites. JOM 69 (4):790–95. doi:10.1007/s11837-016-2232-3.
  • Soto, H., and J. M. Toguri. 1986. Aluminum recovery from dross by flotation. Conservation & Recycling 9 (1):45–54. doi:10.1016/0361-3658(86)90133-5.
  • Sun, Y., Z. Zhang, L. Liu, and X. Wang. 2015. Heat recovery from high temperature slags: A review of chemical methods. Energies 8 (3):1917–35. doi:10.3390/en8031917.
  • Tzonev, T., and B. Lucheva. 2007. Recovering aluminum from aluminum dross in a DC electric-arc rotary furnace. JOM 59 (11):64–68. doi:10.1007/s11837-007-0143-z.
  • Ünlü, N., and M. G. Drouet. 2002. Comparison of salt-free aluminum dross treatment processes. Resources, Conservation and Recycling 36 (1):61–72. doi:10.1016/S0921-3449(02)00010-1.
  • Zhang, H., H. Wang, X. Zhu, Y.-J. Qiu, K. Li, R. Chen, and Q. Liao. 2013. A review of waste heat recovery technologies towards molten slag in steel industry. Applied Energy 112:956–66. doi:10.1016/j.apenergy.2013.02.019.
  • Zuo, Z., Q. Yu, H. Xie, W. Duan, S. Liu, and Q. Qin. 2017. Thermogravimetric analysis of the biomass pyrolysis with copper slag as heat carrier. Journal of Thermal Analysis and Calorimetry 129 (2):1233–41. doi:10.1007/s10973-017-6174-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.