236
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Effect of conventional and microwave thermal treatments on floatability of low- and high-rank lignites

, , ORCID Icon &
Pages 2357-2369 | Received 20 Feb 2019, Accepted 30 Jun 2019, Published online: 20 Jul 2019

References

  • Albijanic, B., E. Amini, E. Wightman, O. Ozdemir, A. V. Nguyen, and D. J. Bradshaw. 2011. A relationship between the bubble–Particle attachment time and the mineralogy of a copper–Sulphide ore. Minerals Engineering 24 (12):1335–39. doi:10.1016/j.mineng.2011.06.005.
  • Al-Harahsheh, M., and S. W. Kingman. 2004. Microwave-assisted leaching—A review. Hydrometallurgy 73 (3–4):189–203. doi:10.1016/j.hydromet.2003.10.006.
  • Batchelor, A. R., D. A. Jones, S. Plint, and S. W. Kingman. 2016. Increasing the grind size for effective liberation and flotation of a porphyry copper ore by microwave treatment. Minerals Engineering 94:61–75. doi:10.1016/j.mineng.2016.05.011.
  • Binner, E., E. Lester, S. Kingman, C. Dodds, J. Robinson, T. Wu, P. Wardle, and J. P. Mathews. 2016. A review of microwave coal processing. Journal Of Microwave Power And Electromagnetic Energy 48 (1):35–60. doi:10.1080/08327823.2014.11689870.
  • Biswal, S. K., and D. K. Acharjee. 2003. Flotation characteristics of high ash oxidised Indian non-coking coal and its effects on cell flotation. The European Journal Of Mineral Processing And Environmental Protection 3 (2):167–76.
  • Cebeci, Y. 2002. The investigation of the ¯oatability improvement of Yozgat Ayrõdam lignite using various collectors. Fuel 81:281–89. doi:10.1016/S0016-2361(01)00165-X.
  • Chen, P., J. Zhai, W. Sun, Y. Hu, and Z. Yin. 2017. The activation mechanism of lead ions in the flotation of ilmenite using sodium oleate as a collector. Minerals Engineering 111:100–07. doi:10.1016/j.mineng.2017.06.009.
  • Chen, S., S. Wang, L. Li, J. Qu, X. Tao, and H. He. 2018. Exploration on the mechanism of enhancing low-rank coal flotation with cationic surfactant in the presence of oily collector. Fuel 227:190–98. doi:10.1016/j.fuel.2018.04.003.
  • Cheng, J., J. Zhou, Y. Li, J. Liu, and K. Cen. 2008. Improvement of coal water slurry property through coal physicochemical modifications by microwave irradiation and thermal heat. Energy & Fuels 22:2422–28. doi:10.1021/ef7005244.
  • Cınar, M. 2009. Floatability and desulfurization of a low-rank (Turkish) coal by low-temperature heat treatment. Fuel Processing Technology 90 (10):1300–04. doi:10.1016/j.fuproc.2009.06.017.
  • Cummings, J., P. Tremain, K. Shah, E. Heldt, B. Moghtaderi, R. Atkin, S. Kundu, and H. Vuthaluru. 2017. Modification of lignites via low temperature ionic liquid treatment. Fuel Processing Technology 155:51–58. doi:10.1016/j.fuproc.2016.02.040.
  • Ersoy, O. F., H. Turgut, O. Guven, K. Cinku, O. Ozdemir, and M. S. Celik. 2013. Effect of heat treatment on the flotation of turkish lignites in brine solution. Materials Science And Technology (ms&t). Montreal, Quebec, Canada. 3: 2044–52.
  • Fuerstenau, D. W., J. M. Rosenbaum, and J. Laskowski. 1983. Effect of surface functional groups on the flotation of coal. Colloids And Surfaces 153–74.
  • Gui, X., L. Lian, Y. Xing, B. Wang, Q. He, and Y. Cao. 2017. Enhancing lignite flotation performance by mechanical thermal expression treatment. International Journal Of Coal Preparation And Utilization 1–8.
  • Hendaa, R., A. Hermasa, R. Gedyeb, and M. R. Islamc. 2016. Microwave enhanced recovery of nickel-copper ore: Communition and floatability aspects. Journal Of Microwave Power And Electromagnetic Energy 40 (1):7–16. doi:10.1080/08327823.2005.11688522.
  • Irannajad, M., A. Mehdilo, and O. Salmani Nuri. 2014. Influence of microwave irradiation on ilmenite flotation behavior in the presence of different gangue minerals. Separation And Purification Technology 132:401–12. doi:10.1016/j.seppur.2014.05.046.
  • Jena, M. S., S. K. Biswal, and M. V. Rudramuniyappa. 2008. Study on flotation characteristics of oxidised Indian high ash sub-bituminous coal. International Journal Of Mineral Processing 87 (1–2):42–50. doi:10.1016/j.minpro.2008.01.004.
  • Kingman, S. W., W. Vorster, and N. A. Rowson. 2000. The influence of mineralogy on microwave assisted grinding. Minerals Engineering 13 (3):313–27. doi:10.1016/S0892-6875(00)00010-8.
  • Lester, E., and S. Kingman. 2004. Effect of microwave heating on the physical and petrographic characteristics of a U.K. Coal, Energy & Fuels 18:140–47. doi:10.1021/ef030088c.
  • Liu, X., T. Hirajima, M. Nonaka, A. T. Mursito, and K. Sasaki. 2016. Use of FTIR combined with forms of water to study the changes in hydrogen bonds during low-temperature heating of lignite. Drying Technology 34 (2):185–93. doi:10.1080/07373937.2015.1026984.
  • Nuri, O. S., A. Mehdilo, and M. Irannajad. 2014. Influence of microwave irradiation on ilmenite surface properties. Applied Surface Science 311:27–32. doi:10.1016/j.apsusc.2014.04.187.
  • Ozbayoglu, G., T. Depci, and N. Ataman. 2009. Effect of microwave radiation on coal flotation. Energy Sources, Part A: Recovery, Utilization, And Environmental Effects 31 (6):492–99. doi:10.1080/15567030701531337.
  • Ozdemir, O., K. Cinku, T. Uslu, E. Kılıc, and M. S. Celik. 2013. Flotation behavior of bituminous and lignite coals in salty water (in Turkish). Afyon Kocatepe University Journal Of Sciences And Engineering 13 (1):1–14. doi:10.5578/fmbd.5218.
  • Ozdemir, O., O. F. Ersoy, O. Guven, H. Turgut, M. Cinar, and M. S. Celik. 2018. Improved flotation of heat treated lignite with saline solutions containing mono and multivalent ions. Physicochemical Problems Of Mineral Processing 54 (4):1070–82.
  • Oztoprak, A. F., 2006, Investigation of the rheological properties of çayirhan coal-water mixtures, M.Sc. Thesis, Middle East Technical University, Mining Endineering Department, Ankara, Turkey, 67.
  • Peng, Z., X. Lin, Z. Li, J.-Y. Hwang, B.-G. Kim, Y. Zhang, G. Li, and T. Jiang. 2017. Dielectric characterization of Indonesian low-rank coal for microwave processing. Fuel Processing Technology 156:171–77. doi:10.1016/j.fuproc.2016.11.001.
  • Singh, H., S. Kumar, and S. K. Mohapatra. 2018. Microwave-assisted rapid upgrading of Indian high ash coal and its blending with untreated coal to improve the slurryability and rheological characteristics of blended slurry. International Journal Of Coal Preparation And Utilization 1–17.
  • Uslu, T., and Ü. Atalay. 2003. Microwave heating of coal for enhanced magnetic removal of pyrite. Fuel Processing Technology 85 (1):21–29. doi:10.1016/S0378-3820(03)00094-8.
  • Xia, W., and G. Xie. 2017. A technological review of developments in chemical-related desulfurization of coal in the past decade. International Journal Of Mineral Processing 161:65–71. doi:10.1016/j.minpro.2017.02.013.
  • Xia, W., J. Yang, and C. Liang. 2013a. Effect of microwave pretreatment on oxidized coal flotation. Powder Technology 233:186–89. doi:10.1016/j.powtec.2012.09.010.
  • Xia, W., J. Yang, and C. Liang. 2013b. A short review of improvement in flotation of low rank/oxidized coals by pretreatments. Powder Technology 237:1–8. doi:10.1016/j.powtec.2013.01.017.
  • Xu, M., Y. Xing, X. Gui, Y. Cao, D. Wang, and L. Wang. 2017. Effect of ultrasonic pretreatment on oxidized coal flotation. Energy & Fuels 31 (12):14367–73. doi:10.1021/acs.energyfuels.7b02115.
  • Ye, Y., R. Jin, and J. D. Miller. 1988. Thermal treatment of low-rank coal and its relationship to flotation response. Coal Preparation 6 (1–2):1–16. doi:10.1080/07349348808960511.
  • Yoon, R. H., and J. L. Yordan. 1991. Induction time measurements for the Quartz-Amine flotation system. Journal Of Colloid And lnterJace Scienc 141 (2):374–83. doi:10.1016/0021-9797(91)90333-4.
  • Zhang, B., G. Yan, Y. Zhao, C. Zhou, and Y. Lu. 2017. Coal pyrite microwave magnetic strengthening and electromagnetic response in magnetic separation desulfurization process. International Journal Of Mineral Processing 168:136–42. doi:10.1016/j.minpro.2017.10.004.
  • Zhang, Z., L. Zhuang, L. Wang, H. Gao, and L. Zhao. 2018. The relationship among contact angle, induction time and flotation recovery of coal. International Journal Of Coal Preparation And Utilization 1–9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.