110
Views
0
CrossRef citations to date
0
Altmetric
Research Article

On prediction of carbon dioxide solubility in aqueous systems of NaCl using LSSVM algorithm

, , ORCID Icon &
Pages 2801-2810 | Received 06 Dec 2018, Accepted 23 Jun 2019, Published online: 08 Aug 2019

References

  • Abdi-Khanghah, M., A. Bemani, Z. Naserzadeh, and Z. Zhang. 2018. Prediction of solubility of N-alkanes in supercritical CO2 using RBF-ANN and MLP-ANN.”. Journal of CO2 Utilization 25:108–19. doi:10.1016/j.jcou.2018.03.008.
  • Baghban, A., S. Habibzadeh, and F.Z. Ashtiani. 2019. Journal of Thermal Analysis and Calorimetry, 135 (1):507–522.doi:10.1007/s10973-018-7074-5
  • Bahadori, A., H. B. Vuthaluru, and S. Mokhatab. 2009. New correlations predict aqueous solubility and density of carbon dioxide. International Journal of Greenhouse Gas Control 3 (4):474–80. doi:10.1016/j.ijggc.2009.01.003.
  • Bakhtiari Manesh, P., S. Shahryari, and A. Bemani. 2018. Utilization of Grid partitioning based Fuzzy inference system approach as a novel method to estimate solubility of hydrocarbons in carbon dioxide. Petroleum Science and Technology 36 (5):350–55. doi:10.1080/10916466.2018.1425718.
  • Bando, S., F. Takemura, M. Nishio, E. Hihara, and M. Akai. 2003. Solubility of CO2 in aqueous solutions of NaCl at (30 to 60) C and (10 to 20) MPa. Journal of Chemical & Engineering Data 48 (3):576–79. doi:10.1021/je0255832.
  • Bermejo, M., A. Martin, L. Florusse, C. Peters, and M. Cocero. 2005. The influence of Na 2 SO 4 on the CO 2 solubility in water at high pressure. Fluid Phase Equilibria 238 (2):220–28. doi:10.1016/j.fluid.2005.10.006.
  • Castillo, O. 2012. Type-2 fuzzy logic in intelligent control applications. Verlag Berlin Heidelberg: Springer.
  • Chapoy, A., A. Mohammadi, A. Chareton, B. Tohidi, and D. Richon. 2004. Measurement and modeling of gas solubility and literature review of the properties for the carbon dioxide− water system. Industrial & Engineering Chemistry Research 43 (7):1794–802. doi:10.1021/ie034232t.
  • Cristianini, N., and J. Shawe-Taylor. 2000. An introduction to support vector machines and other kernel-based learning methods. New York, NY: Cambridge university press.
  • D’souza, R., J. R. Patrick, and A. S. Teja. 1988. High pressure phase equilibria in the carbon dioxide‐n‐Hexadecane and carbon dioxide—Water systems. The Canadian Journal of Chemical Engineering 66 (2):319–23. doi:10.1002/cjce.5450660221.
  • Dehaghani, A. H. S., and R. Soleimani. 2018. On the estimation of interfacial tension for geological CO2 storage. Chemical Engineering & Technology 42 (3):680–89. doi:10.1002/ceat.201700700.
  • Duan, Z., and R. Sun. 2003. An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar. Chemical Geology 193 (3–4):257–71. doi:10.1016/S0009-2541(02)00263-2.
  • Duan, Z., R. Sun, C. Zhu, and I.-M. Chou. 2006. An improved model for the calculation of CO2 solubility in aqueous solutions containing Na+, K+, Ca2+, Mg2+, Cl−, and SO42−. Marine Chemistry 98 (2–4):131–39. doi:10.1016/j.marchem.2005.09.001.
  • Eberhart, R., and J. Kennedy. 1995. A new optimizer using particle swarm theory. MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, IEEE, Nagoya, Japan.
  • Gilbert, K., P. C. Bennett, W. Wolfe, T. Zhang, and K. D. Romanak. 2016. CO2 solubility in aqueous solutions containing Na+, Ca2+, Cl−, SO42− and HCO3-: The effects of electrostricted water and ion hydration thermodynamics. Applied Geochemistry 67:59–67. doi:10.1016/j.apgeochem.2016.02.002.
  • Haghi, R. K., A. Chapoy, L. M. Peirera, J. Yang, and B. Tohidi. 2017. pH of CO2 saturated water and CO2 saturated brines: Experimental measurements and modelling. International Journal of Greenhouse Gas Control 66:190–203. doi:10.1016/j.ijggc.2017.10.001.
  • Hajirezaie, S., X. Wu, and C. A. Peters. 2017. Scale formation in porous media and its impact on reservoir performance during water flooding. Journal of Natural Gas Science and Engineering 39:188–202. doi:10.1016/j.jngse.2017.01.019.
  • Hosseinzadeh, M., and A. Hemmati-Sarapardeh. 2014. Toward a predictive model for estimating viscosity of ternary mixtures containing ionic liquids. Journal of Molecular Liquids 200:340–48. doi:10.1016/j.molliq.2014.10.033.
  • Hou, S.-X., G. C. Maitland, and J. M. Trusler. 2013. Phase equilibria of (CO2+ H2O+ NaCl) and (CO2+ H2O+ KCl): Measurements and modeling. The Journal of Supercritical Fluids 78:78–88. doi:10.1016/j.supflu.2013.03.022.
  • Keybondorian, E., H. Zanbouri, A. Bemani, and T. Hamule. 2017. Estimation of the higher heating value of biomass using proximate analysis. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 39 (20):2025–30. doi:10.1080/15567036.2017.1400609.
  • Kiepe, J., S. Horstmann, K. Fischer, and J. Gmehling. 2002. Experimental determination and prediction of gas solubility data for CO2+ H2O mixtures containing NaCl or KCl at temperatures between 313 and 393 K and pressures up to 10 MPa. Industrial & Engineering Chemistry Research 41 (17):4393–98. doi:10.1021/ie020154i.
  • Liu, Y., M. Hou, G. Yang, and B. Han. 2011. Solubility of CO2 in aqueous solutions of NaCl, KCl, CaCl2 and their mixed salts at different temperatures and pressures. The Journal of Supercritical Fluids 56 (2):125–29. doi:10.1016/j.supflu.2010.12.003.
  • Malmir, P., M. Suleymani, and A. Bemani. 2018. Application of ANFIS-PSO as a novel method to estimate effect of inhibitors on Asphaltene precipitation. Petroleum Science and Technology 36 (8):597–603. doi:10.1080/10916466.2018.1437637.
  • Mao, S., D. Zhang, Y. Li, and N. Liu. 2013. An improved model for calculating CO2 solubility in aqueous NaCl solutions and the application to CO2–H2O–NaCl fluid inclusions. Chemical Geology 347:43–58. doi:10.1016/j.chemgeo.2013.03.010.
  • Menad, N. A., A. Hemmati-Sarapardeh, A. Varamesh, and S. Shamshirband. 2019. Predicting solubility of CO2 in brine by advanced machine learning systems: Application to carbon capture and sequestration. Journal of CO2 Utilization 33:83–95. doi:10.1016/j.jcou.2019.05.009.
  • Messabeb, H., F. O. Contamine, P. Ceézac, J. P. Serin, and E. C. Gaucher. 2016. Experimental measurement of CO2 solubility in aqueous NaCl solution at temperature from 323.15 to 423.15 K and pressure of up to 20 MPa. Journal of Chemical & Engineering Data 61 (10):3573–84. doi:10.1021/acs.jced.6b00505.
  • Mir, M., M. Kamyab, M. J. Lariche, A. Bemani, and A. Baghban. 2018. Applying ANFIS-PSO algorithm as a novel accurate approach for prediction of gas density. Petroleum Science and Technology 36 (12):820–26. doi:10.1080/10916466.2018.1446176.
  • Mohammadi, A. H., F. Gharagheizi, A. Eslamimanesh, and D. Richon. 2012. Evaluation of experimental data for wax and diamondoids solubility in gaseous systems. Chemical Engineering Science 81:1–7. doi:10.1016/j.ces.2012.06.051.
  • Mohammadian, E., H. Hamidi, M. Asadullah, A. Azdarpour, S. Motamedi, and R. Junin. 2015. Measurement of CO2 solubility in NaCl brine solutions at different temperatures and pressures using the potentiometric titration method. Journal of Chemical & Engineering Data 60 (7):2042–49. doi:10.1021/je501172d.
  • Murray, C., and J. Riley. 1971. The solubility of gases in distilled water and sea water—IV. Carbon dioxide. In Deep sea research and oceanographic abstracts, 18 (5):533–541. Elsevier. doi:10.1016/0011-7471(71)90077-5
  • Nighswander, J. A., N. Kalogerakis, and A. K. Mehrotra. 1989. Solubilities of carbon dioxide in water and 1 wt.% sodium chloride solution at pressures up to 10 MPa and temperatures from 80 to 200. degree. C. Journal of Chemical and Engineering Data 34 (3):355–60.
  • Onwunalu, J. E., and L. J. Durlofsky. 2010. Application of a particle swarm optimization algorithm for determining optimum well location and type. Computational Geosciences 14 (1):183–98. doi:10.1007/s10596-009-9142-1.
  • Razavi, R., A. Bemani, A. Baghban, A. H. Mohammadi, and S. Habibzadeh. 2019. An insight into the estimation of fatty acid methyl ester based biodiesel properties using a LSSVM model. Fuel 243:133–41. doi:10.1016/j.fuel.2019.01.077.
  • Rousseeuw, P. J., and A. M. Leroy. 2005. Robust regression and outlier detection. New York, NY: John wiley & sons.
  • Rumpf, B., H. Nicolaisen, C. Öcal, and G. Maurer. 1994. Solubility of carbon dioxide in aqueous solutions of sodium chloride: Experimental results and correlation. Journal of Solution Chemistry 23 (3):431–48. doi:10.1007/BF00973113.
  • Shakeri, F., H. Darvish, H. Garmsiri, and A. Bemani. 2018. Applying Fuzzy c-means approach as a novel method for prediction of interfacial tension between carbon dioxide and hydrocarbons. Petroleum Science and Technology 36 (9–10):648–53. doi:10.1080/10916466.2018.1442851.
  • Sharma, A., and G. Onwubolu. 2009. Hybrid particle swarm optimization and GMDH system. In Hybrid self-organizing modeling systems, ed. Onwubolu, Godfrey, 193–231. Berlin, Heidelberg: Springer.
  • Shi, X., and S. Mao. 2017. An improved model for CO2 solubility in aqueous electrolyte solution containing Na+, K+, Mg2+, Ca2+, Cl− and SO42− under conditions of CO2 capture and sequestration. Chemical Geology 463:12–28. doi:10.1016/j.chemgeo.2017.05.005.
  • Suleymani, M., and A. Bemani. 2018a. Application of ANFIS-PSO algorithm as a novel method for estimation of higher heating value of biomass. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 40 (3):288–93. doi:10.1080/15567036.2017.1413453.
  • Suleymani, M., and A. Bemani. 2018b. Prediction of the interfacial tension between hydrocarbons and carbon dioxide. Petroleum Science and Technology 36 (3):227–31. doi:10.1080/10916466.2017.1416629.
  • Suykens, J. A., and J. Vandewalle. 1999. Least squares support vector machine classifiers. Neural Processing Letters 9 (3):293–300. doi:10.1023/A:1018628609742.
  • Suykens, J. A., and J. Vandewalle. 2000. Recurrent least squares support vector machines. IEEE Transactions on Circuits and Systems Part 1 Fundamental Theory and Applications 47 (7):1109–14. doi:10.1109/81.855471.
  • Talebian, S. H., R. Masoudi, I. M. Tan, and P. L. J. Zitha. 2014. Foam assisted CO2-EOR: A review of concept, challenges, and future prospects. Journal of Petroleum Science and Engineering 120:202–15. doi:10.1016/j.petrol.2014.05.013.
  • Truche, L., E. F. Bazarkina, G. Berger, M.-C. Caumon, G. Bessaque, and J. Dubessy. 2016. Direct measurement of CO2 solubility and pH in NaCl hydrothermal solutions by combining in-situ potentiometry and Raman spectroscopy up to 280 C and 150 bar. Geochimica et Cosmochimica Acta 177:238–53.
  • Venkatraman, A., F. Argüelles-Vivas, R. Okuno, G. Singh, L. W. Lake, and M. F. Wheeler 2016. Modeling impact of aqueous ions on solubility of CO 2 and its implications for sequestration. SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, 26-28 September, Dubai, UAE.
  • Wiebe, R. 1941. The binary system carbon dioxide-water under pressure. Chemical Reviews 29 (3):475–81. doi:10.1021/cr60094a004.
  • Wiebe, R., and V. Gaddy. 1939. The solubility in water of carbon dioxide at 50, 75 and 100, at pressures to 700 atmospheres. Journal of the American Chemical Society 61 (2):315–18. doi:10.1021/ja01871a025.
  • Wiebe, R., and V. Gaddy. 1940. The solubility of carbon dioxide in water at various temperatures from 12 to 40 and at pressures to 500 atmospheres. Critical phenomena. Journal of the American Chemical Society 62 (4):815–17. doi:10.1021/ja01861a033.
  • Zawisza, A., and B. Malesinska. 1981. Solubility of carbon dioxide in liquid water and of water in gaseous carbon dioxide in the range 0.2-5 MPa and at temperatures up to 473 K. Journal of Chemical and Engineering Data 26 (4):388–91. doi:10.1021/je00026a012.
  • Zhao, H., M. V. Fedkin, R. M. Dilmore, and S. N. Lvov. 2015. Carbon dioxide solubility in aqueous solutions of sodium chloride at geological conditions: Experimental results at 323.15, 373.15, and 423.15 K and 150bar and modeling up to 573.15 K and 2000bar. Geochimica et Cosmochimica Acta 149:165–89. doi:10.1016/j.gca.2014.11.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.