380
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Application of commercial zwitterionic surfactants and ionic liquids to reduce interfacial tension and alter wettability in a carbonate reservoir

, , ORCID Icon, ORCID Icon, , , , & show all
Pages 2811-2822 | Received 21 Jan 2019, Accepted 24 Jul 2019, Published online: 09 Aug 2019

References

  • Arab, D., and P. Pourafshary. 2013. Nanoparticles-assisted surface charge modification of the porous medium to treat colloidal particles migration induced by low salinity water flooding. Colloids and Surfaces A: Physicochemical and Engineering Aspects 436:803–14. doi:10.1016/j.colsurfa.2013.08.022.
  • Bera, A., and H. Belhaj. 2016. Ionic liquids as alternatives of surfactants in enhanced oil recovery—A state-of-the-art review. Journal of Molecular Liquids 224:177–88. doi:10.1016/j.molliq.2016.09.105.
  • Bera, A., S. Kissmathulla, K. Ojha, T. Kumar, and A. Mandal. 2012. Mechanistic study of wettability alteration of quartz surface induced by nonionic surfactants and interaction between crude oil and quartz in presence of sodium chloride salt. Energy & Fuels 26:3634–43. doi:10.1021/ef300472k.
  • Bera, A., A. Mandal, and T. Kumar. 2015. Effect of rock-crude oil-fluid interactions on wettability alteration of oil-wet sandstone in presence of surfactants. Petroleum Science and Technology 33 (5):542–49. doi:10.1080/10916466.2014.998768.
  • Chegenizadeh, N., A. Saeedi, and X. Quan. 2017. Most common surfactants employed in chemical enhanced oil recovery. Petroleum 3 (2):197–211. doi:10.1016/j.petlm.2016.11.007.
  • Dang, C., L. Nghiem, N. Nguyen, Z. Chen, and Q. Nguyen. 2016. Mechanistic modeling of low salinity water flooding. Journal of Petroleum Science and Engineering 146:191–209. doi:10.1016/j.petrol.2016.04.024.
  • Hajibagheri, F., M. Lashkarbolooki, S. Ayatollahi, and A. Hashemi. 2017. “The synergic effects of anionic and cationic chemical surfactants, and bacterial solution on wettability alteration of carbonate rock: An experimental investigation”, Colloids and Surfaces A: Physicochem. Colloids and Surfaces A: Physicochemical and Engineering Aspects 513:422–29. doi:10.1016/j.colsurfa.2016.11.010.
  • Hezave, A. Z., S. Dorostkar, S. Ayatollahi, M. Nabipour, and B. Hemmateenejad. 2013a. Investigating the effect of ionic liquid (1-dodecyl-3-methylimidazolium chloride ([C12mim] [Cl])) on the water/oil interfacial tension as a novel surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects 421:63–71. doi:10.1016/j.colsurfa.2012.12.008.
  • Hezave, A. Z., S. Dorostkar, S. Ayatollahi, M. Nabipour, and B. Hemmateenejad. 2013b. Dynamic interfacial tension behavior between heavy crude oil and ionic liquid solution (1 dodecyl-3-methylimidazolium chloride ([mim] [Cl] + distilled or saline water/heavy crude oil)) as a new surfactant. Journal of Molecular Liquids 187:83–89. doi:10.1016/j.molliq.2013.05.007.
  • Hezave, A. Z., S. Dorostkar, S. Ayatollahi, M. Nabipour, and B. Hemmateenejad. 2013c. Effect of different families (imidazolium and pyridinium) of ionic liquids-based surfactants on interfacial tension of water/crude oil system. Fluid Phase Equilibria 360:139–45. doi:10.1016/j.fluid.2013.09.025.
  • Honarvar, B., A. Azdarpour, M. Karimi, A. Rahimi, M. Afkhami Karaei, H. Hamidi, J. Ing, and E. Mohammadian. 2017. Experimental investigation of interfacial tension measurement and oil recovery by carbonated water injection: a case study using core samples from an iranian carbonate oil reservoir. Energy Fuels 31:2740−2748. doi:10.1021/acs.energyfuels.6b03365.
  • Karimi, M., R. S. Al-Maamari, S. Ayatollahi, and N. Mehranbod. 2016. Wettability alteration and oil recovery by spontaneous imbibition of low salinity brine in to carbonates: Impact of Mg2+, SO42- and cationic surfactant. Journal of Petroleum Science and Engineering 147:560–69. doi:10.1016/j.petrol.2016.09.015.
  • Korsnes, R. I., M. V. Madl, T. Austad, S. Haver, and G. Røsland. 2008. The effects of temperature on the water weakening of chalk by seawater. Journal of Petroleum Science and Engineering 60:183–93. doi:10.1016/j.petrol.2007.06.001.
  • Lashkarbolooki, M., M. Riazi, F. Hajibagheri, and S. Ayatollahi. 2016. Low salinity injection into asphaltenic-carbonate oil reservoir, mechanisticaal study. Journal of Molecular Liquids 216:377–86. doi:10.1016/j.molliq.2016.01.051.
  • Mohammadian, E., T. S. T. Ariffin, A. Azdarpour, H. Hamidi, S. Yusof, M. Sabet, and E. Yahya. 2018. Demulsification of light malaysian crude oil emulsions using an electric field method. Industrial & Engineering Chemistry Research 57 (39):13247–56. doi:10.1021/acs.iecr.8b02216.
  • Mohammed, M., and T. Babadagli. 2015. Wettability alteration: A comprehensive review of materials/methods and testing the selected ones on heavy-oil containing oil-wet systems. Advances in Colloid and Interface Science 220:54–77. doi:10.1016/j.cis.2015.02.006.
  • Nabipour, M., S. H. Ayatollahi, and P. Keshavarz. 2017. Application of different novel and newly designed commercial ionic liquids and surfactants for more oil recovery from an Iranian oil field. Journal of Molecular Liquids 230:579–88. doi:10.1016/j.molliq.2017.01.062.
  • Nandwania, S. K., N. I. Malekb, V. N. Lada, M. Chakrabortya, and S. Guptaa. 2017. “Study on interfacial properties of Imidazolium ionic liquids as surfactant and their application in enhanced oil recovery”, Colloids and Surfaces A: Physicochem. Colloids and Surfaces A: Physicochemical and Engineering Aspects 516:383–93. doi:10.1016/j.colsurfa.2016.12.037.
  • Pereira, J. F. B., R. Costa, N. Foios, and J. A. P. Coutinho. 2014. Ionic liquid enhanced oil recovery in sand-pack columns. Fuel 134:196–200. doi:10.1016/j.fuel.2014.05.055.
  • Puntervold, T., S. Strand, R. Ellouz, and T. Austad. 2015. Modified seawater as a smart EOR fluid in chalk. Journal of Petroleum Science and Engineering 133:440–43. doi:10.1016/j.petrol.2015.06.034.
  • Ramırez-Perez, J. F., R. Hernandez-Altamirano, J. M. Martınez-Magadan, R. Cartas-Rosado, E. Soto-Castruita, R. Cisneros-Devora, L. A. Alcazar-Vara, R. Oviedo-Roa, V. Y. Mena-Cervantes, and L. S. Zamudio-Rivera. 2017. Synthesis of branched geminal zwitterionic liquids as wettability modifiers in enhanced oil recovery processes. Journal of Industrial and Engineering Chemistry 45:44–55. doi:10.1016/j.jiec.2016.08.031.
  • Rosen, M. J. 2004. Surfactants and Interfacial Phenomena. New York, NY: John Wiley & Sons, Inc.
  • Rostami, A., A. Hashemi, M. A. Takassi, and A. Zadehnazari. 2017. Experimental assessment of a lysine derivative surfactant for enhanced oil recovery in carbonate rocks: Mechanistic and core displacement analysis. Journal of Molecular Liquids 232:310–18. doi:10.1016/j.molliq.2017.01.042.
  • Saien, J., and M. Kharazi. 2016. A comparative study on the interface behavior of different counter anion long chain imidazolium ionic liquids. Journal of Molecular Liquids 220:136–41. doi:10.1016/j.molliq.2016.04.028.
  • Sakthivel, S., S. Velusamy, V. C. Nair, T. Sharma, and J. S. Sangwai. 2017. Interfacial tension of crude oil-water system with imidazolium and lactam-based ionic liquids and their evaluation for enhanced oil recovery under high saline environment. Fuel 191:239–50. doi:10.1016/j.fuel.2016.11.064.
  • Sheng, J. J. 2011. Modern Chemical Enhanced Oil Recovery. United Kingdom: Elsevier.
  • Strand, S., T. Puntervold, and T. Austad. 2016. Water based EOR from clastic oil reservoirs by wettability alteration: A review of chemical aspects. Journal of Petroleum Science and Engineering 1 (46):1079–91. doi:10.1016/j.petrol.2016.08.012.
  • Teklu, T. W., W. Alameri, R. M. Graves, H. Kazemi, and A. M. Al Sumaiti. 2016. Low-salinity water-alternating-CO2 EOR. Journal of Petroleum Science and Engineering 142:101–18. doi:10.1016/j.petrol.2016.01.031.
  • Ward, A., and L. Tordai. 1946. Time-dependence of boundary tensions of solutions I. The role of diffusion in time-effects. The Journal of Chemical Physics 14:453–61. doi:10.1063/1.1724167.
  • Zhang, P., M. T. Tweheyo, and T. Austad. 2007. “Wettability alteration and improved oil recovery by spontaneous imbibition of seawater into chalk: Impact of the potential determining ions Ca2+, Mg2+, and SO42-”, Colloids and Surfaces A: Physicochem. Colloids and Surfaces A: Physicochemical and Engineering Aspects 301:199–208. doi:10.1016/j.colsurfa.2006.12.058.
  • Zhang, Q. Q., B. X. Cai, W. J. Xu, H. Z. Gang, J. F. Liu, S. Z. Yang, B. Z. Mu. 2015. Novel zwitterionic surfactant derived from castor oil and its performance evaluation for oil recovery. Colloids and Surfaces A: Physicochemical and Engineering Aspects 483:87–95. doi:10.1016/j.colsurfa.2015.05.060.
  • Zhou, H., Y. Zhu, T. Peng, Y. Song, J. An, X. Leng, Z. Yi, Y. Sun, and H. Jia. 2016. Systematic study of the effects of novel halogen-free anionic surface active ionic liquid on interfacial tension of water/model oil system. Journal of Molecular Liquids 223:516–20. doi:10.1016/j.molliq.2016.08.080.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.